Что такое отражение в физике
Отражение (физика)
Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).
В акустике отражение является причиной эха и используется в гидролокации. В геологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света. Отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.
Содержание
История
Впервые закон отражения упоминается в «Катоптрике» Евклида, датируемой примерно 200 лет до н. э.
Законы отражения. Формулы Френеля
Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:
Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает об интенсивности отражённого света.
Сдвиг Фёдорова
Сдвиг Фёдорова — явление малого (меньше длины волны) бокового смещения луча света с круговой или эллиптической поляризацией при полном внутреннем отражении. В результате смещения отражённый луч не лежит в одной плоскости с падающим лучом, как это декларирует закон отражения света геометрической оптики.
Явление теоретически предсказано Ф. И. Фёдоровым в 1954 году, позже обнаружено экспериментально.
Механизм отражения
В классической электродинамике, свет рассматривается как электромагнитная волна, которая описывается уравнениями Максвелла. Световые волны, падающие на диэлектрик вызывают малые колебания диэлектрической поляризации в отдельных атомах, в результате чего каждая частица излучает вторичные волны во всех направлениях (как антенна-диполь). Все эти волны складываются и в соответствии с принципом Гюйгенса — Френеля дают зеркальное отражение и преломление. При попадании электромагнитной волны на проводящую поверхность возникают колебания электронов (электрический ток), электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.
В зависимости от резонансной частоты колебательных контуров в молекулярной структуре вещества при отражении излучается волна определённой частоты (определённого цвета). Так предметы приобретают цвет. Хотя цвет объекта определяется не только свойствами отражённого света (см. Цветовое зрение и Физиология восприятия цвета).
Виды отражения
Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.
Зеркальное отражение
Зеркальное отражение света отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения; 2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от угла падения и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения показателей преломления n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен
В важном частном случае нормального падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.
Полное внутреннее отражение
Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).
С увеличением угла падения , угол преломления также возрастает, при этом интенсивность отражённого луча растет, а преломленного — падает (их сумма равна интенсивности падающего луча). При некотором критическом значении
интенсивность преломленного луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления равным 90°:
Диффузное отражение света
При отражении света от неровной поверхности отраженные лучи расходятся в разные стороны (см. Закон Ламберта). По этой причине нельзя увидеть свое отражение, глядя на шероховатую (матовую) поверхность. Диффузным отражение становится при неровностях поверхности порядка длины волны и более. Таким образом, одна и та же поверхность может быть матовой, диффузно-отражающей для видимого или ультрафиолетового излучения, но гладкой и зеркально-отражающей для инфракрасного излучения.
Полезное
Смотреть что такое «Отражение (физика)» в других словарях:
Отражение — Отражение: Отражение (физика) физический процесс взаимодействия волн или частиц с поверхностью. Отражение (геометрия) движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью. Отражение… … Википедия
ФИЗИКА — ФИЗИКА, наука, изучающая совместно с химией общие законы превращения энергии и материи. В основе обеих наук лежат два основных закона естествознания закон сохранения массы (закон Ломоносова, Лавуазье) и закон сохранения энергии (Р. Майер, Джауль… … Большая медицинская энциклопедия
Физика и реальность — «ФИЗИКА И РЕАЛЬНОСТЬ» сборник статей А. Эйнштейна, написанных в разные периоды его творческой жизни. Рус. издание М., 1965. В книге нашли отражение основные эпистемологические и методологические воззрения великого физика. Среди них… … Энциклопедия эпистемологии и философии науки
Физика — I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия
Отражение (геометрия) — У этого термина существуют и другие значения, см. Отражение. Оптическое отражение в реке прибрежных деревьев … Википедия
НЕЙТРОННАЯ ФИЗИКА — совокупность исследований строения в ва с помощью нейтронов, а также исследования св в и структуры самих нейтронов (времени жизни, магн. момента и др.). Отсутствие у нейтрона электрич. заряда приводит к тому, что они в осн. взаимодействуют… … Физическая энциклопедия
Оптик — Таблица оптики, Энциклопедия, 1728 Оптика (от др. греч. ὀπτική появление или взгляд) раздел физики, который описывает поведение, свойства, первопричинность и природу света, объясняет связанные с этим явления. Под светом понимают не только… … Википедия
Базовые физические понятия — # А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х … Википедия
Reflection (значения) — Reflection (альбом) сборник песен группы Paradise Lost. Отражение (программирование) механизм языка программирования, позволяющий во время выполнения исследовать и изменять структуру программы. Отражение (физика) физический процесс взаимодействия … Википедия
НАУКА — особый вид познавательной деятельности, направленный на выработку объективных, системно организованных и обоснованных знаний о мире. Взаимодействует с др. видами познавательной деятельности: обыденным, художественным, религиозным, мифологическим … Философская энциклопедия
Отражение света
Отражение — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими свойствами в котором волновой фронт возвращается в среду, из которой он пришёл.
Содержание
История
Впервые закон отражения упоминается в «Катоптрике» Евклида, датируемой примерно 300 до н. э.
Законы отражения. Формулы Френеля
Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:
Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает об интенсивности отражённого света.
Механизм отражения
При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.
Виды отражения
Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.
Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен
В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд » 1,0; nст = 1,5) он составляет » 4 %.
Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 Полное внутреннее отражение
Законы отражения света и история их открытия
Закон отражения света был открыт в результате наблюдений и экспериментов. Конечно, это можно вывести теоретически, но все принципы, которые используются сейчас, определены и обоснованы на практике. Знание основных характеристик этого явления помогает при планировании освещения и выборе оборудования. Этот принцип работает и в других областях: радиоволны, рентгеновские лучи и т.д. Ведут себя точно так же при отражении.
Что такое отражение света и его разновидности, механизм
Закон формулируется следующим образом: падающий и отраженный лучи лежат в одной плоскости, имеющей перпендикуляр к отражающей поверхности, выступающей из точки падения. Угол падения равен углу отражения.
По сути, отражение — это физический процесс, в котором луч, частицы или излучение взаимодействуют с плоскостью. Направление волн меняется на границе двух сред, так как они обладают разными свойствами. Отраженный свет всегда возвращается в окружающую среду, откуда он исходит. Очень часто при отражении также наблюдается явление преломления волн.
Это схематическое объяснение закона отражения света.
Зеркальное отражение
В этом случае существует четкая взаимосвязь между отраженными и падающими лучами, это главная особенность данной разновидности. Вот несколько ключевых моментов о зеркальном отражении:
В случае зеркального отражения углы падения и отражения всегда одинаковы.
В этом случае показатели преломления зависят от свойств плоскости и характеристик света. Это отражение можно найти везде, где есть гладкие поверхности. Но для разных сред условия и принципы могут меняться.
Полное внутреннее отражение
Типично для звуковых и электромагнитных волн. Это происходит там, где встречаются две среды. В этом случае волны должны падать из среды с меньшей скоростью распространения. Что касается света, то можно сказать, что показатели преломления в этом случае значительно увеличиваются.
Полное внутреннее отражение характерно для водной поверхности.
Угол падения светового луча влияет на угол преломления. С увеличением его значения интенсивность отраженных лучей увеличивается, а интенсивность преломленных лучей уменьшается. При достижении определенного критического значения показатели преломления уменьшаются до нуля, что приводит к полному отражению лучей.
Критический угол рассчитывается индивидуально для разных сред.
Диффузное отражение света
Этот вариант отличается тем, что при попадании на неровную поверхность лучи отражаются в разные стороны. Отраженный свет просто рассеивается, поэтому вы не можете увидеть свое отражение на неровной или непрозрачной плоскости. Явление диффузии лучей наблюдается, когда неровности равны длине волны или превышают ее.
При этом одна и та же плоскость может диффузно отражать свет или ультрафиолетовое излучение, но при этом хорошо отражать инфракрасный спектр. Все зависит от характеристик волн и свойств поверхности.
Диффузное отражение хаотично из-за неровностей поверхности.
Обратное отражение
Это явление наблюдается, когда лучи, волны или другие частицы отражаются назад, то есть к источнику. Это свойство можно использовать в астрономии, естествознании, медицине, фотографии и других областях. Благодаря системе выпуклых линз в телескопах можно видеть свет звезд, невидимый невооруженным глазом.
Обратным отражением можно управлять за счет сферической формы отражающей поверхности.
важно создать определенные условия для возврата света к источнику, чаще это достигается за счет оптики и направления луча лучей. Например, этот принцип используется в ультразвуковых исследованиях, благодаря отраженным ультразвуковым волнам на мониторе выводится изображение исследуемого органа.
История открытия законов отражения
Это явление известно давно. Впервые об отражении света упоминается в произведении «Катоптрика», датируемом 200 г до н.э и написанном древнегреческим ученым Евклидом. Первые опыты были простыми, поэтому на тот момент не появилось никаких теоретических оснований, но именно он открыл это явление. В этом случае для зеркальных поверхностей использовался принцип Ферма.
Формулы Френеля
Огюст Френель был французским физиком, который разработал ряд формул, широко используемых по сей день. Они используются для расчета интенсивности и амплитуды отраженных и преломленных электромагнитных волн. Кроме того, они должны проходить через резкую границу между двумя средами с разными значениями преломления.
Все явления, которые соответствуют формулам французского физика, называются отражением Френеля. Но следует помнить, что все полученные закономерности верны только тогда, когда средние изотропны и граница между ними четкая. В этом случае угол падения всегда равен углу отражения, а величина преломления определяется по закону Снеллиуса.
важно, что когда свет падает на плоскую поверхность, может быть два типа поляризации:
Френель вывел целый ряд формул, которые позволяют выполнять все необходимые вычисления.
Формулы для ситуаций с разной поляризацией разные. Это связано с тем, что поляризация влияет на характеристики луча и по-разному отражается. Когда свет падает под определенным углом, отраженный луч может быть полностью поляризован. Этот угол называется углом Брюстера, он зависит от преломляющих характеристик среды на границе раздела.
Говоря о которых! Отраженный луч всегда поляризован, даже если падающий свет не поляризован.
Принцип Гюйгенса
Гюйгенс — голландский физик, которому удалось вывести принципы, позволяющие описывать волны любой природы. Именно с его помощью часто демонстрируются как закон отражения, так и закон преломления света.
Это простейшее схематическое изображение принципа Гюйгенса.
В данном случае под светом понимается плоская волна, то есть все поверхности волны плоские. В этом случае поверхность волны представляет собой набор точек с колебаниями в одной фазе.
Формулировка такова: каждая точка, до которой доходит возмущение, становится источником сферических волн.
В видео закон физики 8-го класса объясняется очень простыми словами с помощью графики и анимации.
Сдвиг Федорова
его еще называют эффектом Федорова-Амбера. В этом случае происходит смещение светового пучка с полным внутренним отражением. В этом случае смещение незначительное, оно всегда меньше длины волны. Из-за этого смещения отраженный луч не лежит в той же плоскости, что и падающий, что противоречит закону отражения света.
Диплом о научном открытии был вручен Ф.И. Федорову в 1980 году.
Боковое смещение лучей было теоретически доказано советскими учеными в 1955 году благодаря математическим расчетам. Что касается экспериментального подтверждения этого эффекта, то вскоре его сделал французский физик Эмбер.
Использование закона на практике
Примеры отражения света вездесущи.
Рассматриваемый закон гораздо более распространен, чем кажется. Этот принцип широко используется в различных сферах:
Говоря о которых! Через отражение света мы видим луну и звезды.
Закон отражения света объясняет многие природные явления, а знание его характеристик позволило нам создать оборудование, которое широко используется в наше время.
Законы отражения света и история их открытия
Закон отражения света был открыт путем наблюдений и опытов. Конечно, его можно вывести и теоретически, но все принципы, которые используются сейчас, были определены и обоснованы практическим путем. Знание основных особенностей этого явления помогает при планировании освещения и выборе оборудования. Этот принцип работает и в других сферах – радиоволны, рентгеновское излучение и т.д. ведут себя точно так же при отражении.
Что такое отражение света и его разновидности, механизм
Закон формулируется так: падающий и отраженный лучи лежат в одной плоскости, имеющей перпендикуляр относительно отражающей поверхности, который выходит из точки падения. Угол падения равен углу отражения.
По сути, отражение это физический процесс, при котором луч, частицы или излучение взаимодействуют с плоскостью. Направление волн изменяется на границе двух сред, так как они имеют разные свойства. Отраженный свет всегда возвращается в ту среду, из которой пришел. Чаще всего при отражении наблюдается и явление преломления волн.
Зеркальное отражение
В этом случае наблюдается четкая взаимосвязь между отраженными и падающими лучами, это является главной особенностью данной разновидности. Есть несколько основных моментов, характерных для зеркального отражения:
При этом показатели преломления зависят от свойств плоскости и особенностей света. Это отражение можно встретить везде, где есть гладкие поверхности. Но для разных сред условия и принципы могут меняться.
Полное внутреннее отражение
Характерно для звуковых и электромагнитных волн. Возникает в месте, где встречаются две среды. При этом волны должны падать из среды, в которой скорость распространения ниже. Применительно к свету можно сказать, что показатели преломления в этом случае сильно возрастают.
Угол падения луча света влияет на угол преломления. С увеличением его значения интенсивность отраженных лучей увеличивается, а преломленных снижается. При достижении определенного критического значения показатели преломления уменьшаются до нулевой отметки, что приводит к полному отражению лучей.
Критический угол вычисляется индивидуально для разных сред.
Диффузное отражение света
Этот вариант характеризуется тем, что при попадании на неровную поверхность лучи отражаются в разных направлениях. Отраженный свет просто рассеивается и именно из-за этого нельзя увидеть свое отражение на неровной или матовой плоскости. Явление диффузии лучей наблюдается, когда неровности равны длине волны или превышают ее.
При этом одна и так же плоскость может быть диффузно отражающей для света или ультрафиолета, но при этом хорошо отражать инфракрасный спектр. Все зависит от особенностей волн и свойств поверхности.
Обратное отражение
Это явления наблюдается, когда лучи, волны или другие частицы отражаются обратно, то есть в сторону источника. Такое свойство может быть использовано в астрономии, естествознании, медицине, фотографии и других сферах. За счет системы выпуклых линз в телескопах есть возможность увидеть свет звезд, которые не видны невооруженным глазом.
Важно создать определенные условия, чтобы свет возвращался к источнику, это достигается чаще всего за счет оптики и пучкового направления лучей. Например, этот принцип применяется в УЗИ-исследованиях, благодаря отраженным ультразвуковым волнам на монитор выводится изображение исследуемого органа.
История открытия законов отражения
Это явление было известно давно. Впервые об отражении света упоминалось в труде «Катоптрика», который датируется 200 г. до н.э. и написан древнегреческим ученым Евклидом. Первые эксперименты были простыми, поэтому никакой теоретической базы в тот период не появилось, но данное явление открыл именно он. При этом использовался принцип Ферма для зеркальных поверхностей.
Формулы Френеля
Огюст Френель был французским физиком, который вывел ряд формул, они широко используются по сей день. Их применяют при вычислении интенсивности и амплитуды отраженных и преломленных электромагнитных волн. При этом они должны проходить через четкую границу между двумя средами с различающимися значениями преломления.
Все явления, которые подходят под формулы французского физика называют френелевским отражением. Но нужно помнить о том, что все выведенные закономерности справедливы только тогда, когда среды изотропны, а граница между ними четкая. В этом случае угол падения всегда равняется углу отражения, а значение преломления определяется по закону Снеллиуса.
Важно, что при падении света на плоскую поверхность может быть два вида поляризации:
Формулы для ситуаций с разной поляризацией различаются. Это связано с тем, что поляризация влияет на характеристики луча и он отражается по-разному. При падении света под определенным углом отраженный луч может быть полностью поляризованным. Этот угол называют углом Брюстера, он зависит от характеристик преломления сред на границе раздела.
Кстати! Отраженный луч всегда поляризован, даже если падающий свет был неполяризованным.
Принцип Гюйгенса
Гюйгенс – голландский физик, которому удалось вывести принципы, позволяющие описать волны любой природы. Именно с его помощью чаще всего доказывают как закон отражения, так и закон преломления света.
В этом случае свет подразумевается как волна плоской формы, то есть все волновые поверхности плоские. При этом волновая поверхность – совокупность точек с колебанием в одной и той же фазе.
Формулировка звучит так: любая точка, к которой пришло возмущение впоследствии становится источником сферических волн.
В видео очень простыми словами с помощью графики и анимации объясняется закон из физики 8 класса.
Сдвиг Федорова
Его также называют эффектом Федорова-Эмбера. В этом случае наблюдается смещение луча света при полном внутреннем отражении. При этом сдвиг незначительный, он всегда меньше, чем длина волны. Из-за этого смещения отраженный луч не лежит в одной плоскости с падающим, что идет вразрез с законом отражения света.
Диплом на научное открытие был вручен Ф.И. Федорову в 1980 году.
Боковое смещение лучей было теоретически доказано советским ученым в 1955 году благодаря математическим вычислениям. Что касается экспериментального подтверждения этого эффекта, то немного позже это сделал французский физик Эмбер.
Использование закона на практике
Рассматриваемый закон встречается намного чаще, чем кажется. Этот принцип широко используется в самых разных сферах:
Кстати! Благодаря отражению света мы видим луну и звезды.
Закон отражения света объясняет многие природные явления, а знание его особенностей позволило создать оборудование, которое широко используется в наше время.