Что такое хорда лопасти
Хорда сечения лопасти несущего винта
18. Хорда сечения лопасти несущего винта
Отрезок прямой, лежащий в плоскости, перпендикулярной к оси лопасти, и соединяющий наиболее удаленные точки сечения лопасти этой плоскостью.
Смотреть что такое «Хорда сечения лопасти несущего винта» в других словарях:
ГОСТ 22499-77: Аппараты винтокрылые. Механика полета в атмосфере. Термины, определения и буквенные обозначения — Терминология ГОСТ 22499 77: Аппараты винтокрылые. Механика полета в атмосфере. Термины, определения и буквенные обозначения оригинал документа: Jв относительно вертикального шарнира. Определения термина из разных документов: Jв Jг относительно… … Словарь-справочник терминов нормативно-технической документации
Ми — Рис. 1. Эмблема вертолётов марки Ми. Ми марка вертолётов, созданных в ОКБ, возглавлявшемся М. Л. Милем (см. Московский вертолётный завод имени М. Л. Миля). При жизни Миля марка (рис. 1) присваивалась вертолёту при запуске его в серию.… … Энциклопедия «Авиация»
Ми — Рис. 1. Эмблема вертолётов марки Ми. Ми марка вертолётов, созданных в ОКБ, возглавлявшемся М. Л. Милем (см. Московский вертолётный завод имени М. Л. Миля). При жизни Миля марка (рис. 1) присваивалась вертолёту при запуске его в серию.… … Энциклопедия «Авиация»
Ми — марка вертолётов, созданных в ОКБ, возглавлявшемся М. Л. Милем (см. Московский вертолётный завод имени М. Л. Миля). При жизни Миля марка присваивалась вертолёту при запуске его в серию. Основное направление деятельности предприятия создание… … Энциклопедия техники
угол атаки — Рис. 1. Угол атаки профиля. угол атаки 1) У. а. профиля угол α между направлением вектора скорости набегающего потока и направлением хорды профиля (рис. 1, см. также Профиль крыла); геометрическая характеристика, определяющая режим… … Энциклопедия «Авиация»
угол атаки — Рис. 1. Угол атаки профиля. угол атаки 1) У. а. профиля угол α между направлением вектора скорости набегающего потока и направлением хорды профиля (рис. 1, см. также Профиль крыла); геометрическая характеристика, определяющая режим… … Энциклопедия «Авиация»
хорда сечения лопасти
хорда сечения лопасти
Отрезок прямой, соединяющий переднюю и заднюю кромки лопасти и лежащий в рассматриваемом сечении.
[ГОСТ 21664-76]
Тематики
Смотреть что такое «хорда сечения лопасти» в других словарях:
Хорда сечения лопасти несущего винта — 18. Хорда сечения лопасти несущего винта b Отрезок прямой, лежащий в плоскости, перпендикулярной к оси лопасти, и соединяющий наиболее удаленные точки сечения лопасти этой плоскостью. Примечание. Для определения хорды произвольного сечения… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 22499-77: Аппараты винтокрылые. Механика полета в атмосфере. Термины, определения и буквенные обозначения — Терминология ГОСТ 22499 77: Аппараты винтокрылые. Механика полета в атмосфере. Термины, определения и буквенные обозначения оригинал документа: Jв относительно вертикального шарнира. Определения термина из разных документов: Jв Jг относительно… … Словарь-справочник терминов нормативно-технической документации
Воздушный винт — пропеллер, движитель, в котором радиально расположенные профилированные лопасти, вращаясь, отбрасывают воздух и тем самым создают силу тяги. В. в. состоит из втулки, расположенной на валу двигателя, и лопастей, имеющих вдоль размаха… … Большая советская энциклопедия
Ми — марка вертолётов, созданных в ОКБ, возглавлявшемся М. Л. Милем (см. Московский вертолётный завод имени М. Л. Миля). При жизни Миля марка присваивалась вертолёту при запуске его в серию. Основное направление деятельности предприятия создание… … Энциклопедия техники
Ми — Рис. 1. Эмблема вертолётов марки Ми. Ми марка вертолётов, созданных в ОКБ, возглавлявшемся М. Л. Милем (см. Московский вертолётный завод имени М. Л. Миля). При жизни Миля марка (рис. 1) присваивалась вертолёту при запуске его в серию.… … Энциклопедия «Авиация»
Ми — Рис. 1. Эмблема вертолётов марки Ми. Ми марка вертолётов, созданных в ОКБ, возглавлявшемся М. Л. Милем (см. Московский вертолётный завод имени М. Л. Миля). При жизни Миля марка (рис. 1) присваивалась вертолёту при запуске его в серию.… … Энциклопедия «Авиация»
ГИДРОАЭРОМЕХАНИКА — раздел механики, изучающий движение жидкостей и газов в условиях, при которых не имеют практического значения различия в сжимаемости. Такой единый подход возможен, поскольку благодаря своей текучести жидкие и газообразные среды ведут себя… … Энциклопедия Кольера
Пикайя — † Пикайя Научная классифи … Википедия
Экспериментальная эмбриология* — иначе механика развития, хотя было бы правильнее ее называть физиологией развития занимается изучением развития животных при искусственных условиях. Если эмбриология (см.) вообще изучает морфологическую сторону развития и пытается ответить на… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Экспериментальная эмбриология — иначе механика развития, хотя было бы правильнее ее называть физиологией развития занимается изучением развития животных при искусственных условиях. Если эмбриология (см.) вообще изучает морфологическую сторону развития и пытается ответить на… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Конструкция лопасти несущего винта вертолета
Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).
Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.
Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.
При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.
Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:
Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.
При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.
Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.
Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего — стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.
Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.
К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора — нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части — к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.
Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5—6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.
При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.
Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.
Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.
Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.
Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.
Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.
Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти — 2 мм.
Предотвратить обледенение возможно двумя путями.
Первый путь — это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.
Второй путь — это оборудование лопастей противо-обледенительными устройствами.
Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может
быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.
Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.
Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.
Будущее покажет, какой из этих способов найдет себе более широкое применение.
Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.
Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.
Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.
Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади
Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05—0,08 (среднее значение 0,065).
Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9—12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.
Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.
Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.
RCSearch
На рис. 3 показано распределение сил вдоль лопасти.
Из-за того, что большая часть подъёмной силы создаётся на быстро движущейся внешней части лопасти, эта сила действует так, как будто приложена к точке на расстоянии 80% длины лопасти от основного вала. Лопасть поднимается на угол конусности до тех пор, пока подъёмная сила не будет скомпенсирована перпендикулярной к лопасти компонентой центробежной силы.
Содержание
Центр вращения [ править ]
Центробежная сила действует не в центре тяжести, а в точке, называемой центром вращения (ЦВ). Центр вращения отличается от центра тяжести: при воздействии центробежной силы, масса у оси вращения движется медленнее и вносит меньший вклад, чем масса ближе к концу лопасти.
У лопасти, однородной по всей длине, ЦВ находится в 58% от длины лопасти. Добавление груза на конец лопасти выдвигает ЦВ еще дальше. Добавление 25-граммового груза к 70-гаммовой лопасти приведет к смещению ЦВ до точки 70% от длины лопасти. Центр тяжести же будет находиться примерно на 62%.
Распределение массы [ править ]
Распределение массы внутри лопасти важно, потому что сочетание заднего ЦВ и большой гибкости на кручение делает лопасть подверженной флаттеру. Однако слишком передний ЦВ может вызвать большую нагрузку на сервомашинку коллективного шага. Это особенно проявляется при небольшом расстоянии между вертикальными шарнирами, которое вызывает большой угол запаздывания при подъёме или маневрах с большими перегрузками.
Лопасти из однородного материала [ править ]
ЦТ лопасти из материала однородной плотности будет располагаться на хорде примерно в 35% от передней кромки. Если лопасть однородна по всей длине (т.е. без грузов), то положение ЦВ на хорде совпадает с ЦТ. Профиль лопасти около передней кромки создает большую подъёмную силу, чем около задней и вследствие этого центр подъемной силы (ЦПС) находится всего на 25-м проценте хорды от передней кромки.
На рис. 4 показан вид с конца лопасти. ЦВ лежит позади центра подъёмной силы. Подъёмная сила, действующая в своей условной точке центра, уравновешивается направленной вниз составляющей центробежной силы, действующей в точке центра вращения. Расстояние между точкой приложения подъемной силы и точкой ЦВ вызывает скручивающее усилие или пару сил, которые стремятся выгнуть переднюю кромку вверх и тем самым увеличить угол атаки. Если лопасть подвержена скручиванию, то увеличение подъёмной силы будет еще более резко выражено из-за увеличения коэффициента подъёмной силы вследствие скручивания лопасти вверх. Такое взаимодействие между подъёмной силой и скручиванием может вызвать колебания, называемые флаттером: при этом конец лопасти входит в сильные крутящие колебания, которые могут сделать вертолёт неуправляемым или разрушить структуру лопасти.
Лопасти с грузом [ править ]
Для предотвращения флаттера ЦВ должен быть перенесён в точку центра подъёмной силы или перед ней. Для этого деревянные лопасти делаются с использованием твёрдой древесины в передней кромке и бальзы – в задней. Груз, добавленный к передней кромке, переносит ЦВ ещё больше вперёд. Груз, установленный у конца лопасти, оказывает большее влияние, чем установленный у комля, т.о. грузы в передней кромке на концах лопастей могут значительно вынести ЦВ вперёд на хорде относительно ЦТ.
На рис. 5 показано как при добавлении груза в переднюю кромку ЦВ смещается вперёд перед центром подъёмной силы. Теперь крутящее усилие направлено в обратную сторону и стремится уменьшить угол атаки. Т.о. увеличение подъёмной силы будет сопровождаться скручиванием лопасти вниз, уменьшая коэффициент подъёмной силы. Это смягчает изменения подъёмной силы и предотвращает флаттер. На практике же флаттер прекращается и при расположении ЦВ недалеко позади от ЦПС. Чем более устойчива лопасть к кручению, тем дальше они могут быть размещены.
Нагрузка на систему управления [ править ]
Здесь рассмотрены моменты, которые лопасти прилагают к шарнирам. Эти моменты должны быть скомпенсированы системой управления и, в конце концов, сервомашинками, особенно – сервомашинкой коллективного шага. Поэтому конструкция головки ротора оказывает огромное воздействие на поведение конкретного набора лопастей.
Лопасть без груза с крепёжным отверстием на линии ЦВ [ править ]
На рис 6. видно, что если отверстие для болта (которое работает как вертикальный шарнир) находится на одной линии с центром вращения, расположенным примерно на 35-м проценте хорды, то центр подъёмной силы будет лежать перед осью осевого шарнира.
Т.о. подъёмная сила вызывает момент, стремящийся увеличить угол атаки. При наличии люфтов в тягах коллективного шага это может вызвать довольно резкую реакцию на изменение шага.
Лопасть с грузом у передней кромки [ править ]
На рис. 7 добавлением груза в переднюю кромку ЦВ смещён вперёд и к концу лопасти.
При этом центр подъёмной силы находится позади оси осевого шарнира и вызывает момент, стремящийся уменьшить угол атаки. Это сглаживает эффект от люфта тяг и даёт более мягкую реакцию на управление коллективным шагом.
Лопасть без груза с крепёжным отверстием у задней кромки [ править ]
На рис. 8 видно, что ЦВ обычно лежит ближе к комлю, чем ЦПС. Перемещение крепёжного отверстия ближе к задней кромке отклоняет лопасть назад, а также перемещает назад ЦПС.
Сравните рис. 8 с рис. 7, где добавление груза смещает ЦВ к концу лопасти в направлении центра подъемной силы. Это делает перенос крепежного отверстия менее эффективным, чем на лопасти без груза.
Угол запаздывания [ править ]
Угол запаздывания вызывается моментом, передаваемым головкой ротора на лопасти через вертикальный шарнир. Из рис. 9 видно, что угол запаздывания перемещает ЦПС назад относительно оси осевого шарнира и т.о. производит момент, стремящийся наклонить переднюю кромку вниз вокруг осевого шарнира.
Угол запаздывания изменяется от нуля (или слегка отрицательного) во время авторотации до своего максимального значения при большой нагрузке (высоких перегрузках), особенно если обороты ротора (и т.о. центробежная сила) малы. Здесь начинает оказывать влияние конструкция ротора, потому что угол запаздывания зависит от расстояния между вертикальными шарнирами. Чем больше это расстояние, тем меньше угол запаздывания (см. рис. 10).
хорда лопасти
Смотреть что такое «хорда лопасти» в других словарях:
Хорда сечения лопасти несущего винта — 18. Хорда сечения лопасти несущего винта b Отрезок прямой, лежащий в плоскости, перпендикулярной к оси лопасти, и соединяющий наиболее удаленные точки сечения лопасти этой плоскостью. Примечание. Для определения хорды произвольного сечения… … Словарь-справочник терминов нормативно-технической документации
хорда сечения лопасти — Отрезок прямой, соединяющий переднюю и заднюю кромки лопасти и лежащий в рассматриваемом сечении. [ГОСТ 21664 76] Тематики винты воздушные авиационных двигателей … Справочник технического переводчика
ГОСТ 22499-77: Аппараты винтокрылые. Механика полета в атмосфере. Термины, определения и буквенные обозначения — Терминология ГОСТ 22499 77: Аппараты винтокрылые. Механика полета в атмосфере. Термины, определения и буквенные обозначения оригинал документа: Jв относительно вертикального шарнира. Определения термина из разных документов: Jв Jг относительно… … Словарь-справочник терминов нормативно-технической документации
Заполнение несущего винта — отношение площади лопастей несущего винта в плане к сметаемой площади. Определяется приближённо по формуле (σ) = zb/((π)R), где R радиус винта, z число лопастей, b хорда лопасти на радиусе 0,7R. Для каждого значения окружной скорости конца… … Энциклопедия техники
заполнение несущего винта — заполнение несущего винта отношение площади лопастей несущего винта в плане к ометаемой площади. Определяется приближённо по формуле σ = zb/(πR), где R радиус винта, z число лопастей, b хорда лопасти на радиусе 0,7R.… … Энциклопедия «Авиация»
заполнение несущего винта — заполнение несущего винта отношение площади лопастей несущего винта в плане к ометаемой площади. Определяется приближённо по формуле σ = zb/(πR), где R радиус винта, z число лопастей, b хорда лопасти на радиусе 0,7R.… … Энциклопедия «Авиация»
Циклокоптер — Схематичный циклокоптер Циклокоптер (цикложир) это конструкция самолета, где для создания тяги и подъёмной силы используются вращающиеся роторы. Такая схема имеет те же плюсы, что и вертолёт: возможность вертикального взлёта, зависания в… … Википедия
МЕХАНИКА РАЗВИТИЯ — МЕХАНИКА РАЗВИТИЯ. Содержание: История. 18 Материалы и методы исследования. 20 Проблема детерминации. 22 Два основных типа формообразования. 26 М. р. и регенерация. 30 Практическое значение М … Большая медицинская энциклопедия
Ланцетники — Европейский ланцетник (Branchiost … Википедия
Воздушный винт — пропеллер, движитель, в котором радиально расположенные профилированные лопасти, вращаясь, отбрасывают воздух и тем самым создают силу тяги. В. в. состоит из втулки, расположенной на валу двигателя, и лопастей, имеющих вдоль размаха… … Большая советская энциклопедия
Головной мозг — (Encephalon). А. Анатомия головного мозга человека: 1) строение Г. мозга, 2) оболочки мозга, 3) кровообращение в Г. мозгу, 4) ткань мозга, 5) ход волокон в мозгу, 6) вес мозга. В. Эмбриональное развитие Г. мозга у позвоночных животных. С.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона