что такое феррорезонанс простыми словами
Феррорезонанс в электрических цепях
Непосредственно же термин «феррорезонанс», спустя 13 лет, ввел тоже француз, инженер и преподаватель электротехники, Пауль Бушеро в своей статье 1920 года, которая назвалась «Существование двух режимов феррорезонанса» (Йxistence de Deux Rйgimes en Ferrorйsonance). Бушеро проанализировал явление феррорезонанса, и показал, что существует две стабильные резонансные частоты в цепи, состоящей из конденсатора, резистора и нелинейной индуктивности.
Очевидно, линейным цепям феррорезонанс абсолютно не свойственен. В случае, если индуктивность в контуре линейна, а емкость нелинейна, то возможно явление аналогичное феррорезонансу. Основной особенностью феррорезонанса является то, что для одной цепи характерны различные режимы этого нелинейного резонанса, в зависимости от вида возмущения.
От чего индуктивность может быть нелинейна? Главным образом из-за того, что магнитопровод этого элемента изготовлен из материала, нелинейно реагирующего на магнитное поле. Обычно сердечники изготавливают из ферромагнетиков либо ферримагнетиков, и когда термин «феррорезонанс» был введен Паулем Бушеро, теория ферримагнетизма еще не была сформирована до конца, а все материалы такого рода называли ферромагнетиками, вот и возник термин «феррорезонанс» для обозначения явления резонанса в цепи с нелинейной индуктивностью.
С феррорезонансом ситуация иная. Индуктивное сопротивление связано с плотностью магнитного потока в сердечнике, например в железном сердечнике трансформатора, и принципиально получается два индуктивных сопротивления в зависимости от ситуации относительно кривой насыщения: индуктивное сопротивление линейное и индуктивное сопротивление при насыщении.
Феррорезонанс в штатных условиях функционирования трехфазных сетей маловероятен, поскольку емкости элементов, составляющих сеть, оказываются шунтированы индуктивностью питающей входной сети.
В сетях с незаземленной нейтралью при неполнофазном режиме феррорезонанс более вероятен. Изолированность нейтрали приводит к тому, что емкость сети относительно земли оказывается последовательно соединенной с силовым трансформатором, и такие условия феррорезонансу благоприятствуют. Такой благоприятный для феррорезонанса неполнофазный режим возникает тогда, когда например одна из фаз разорвана, имеет место неполнофазное включение или несимметричное КЗ.
Возникнувший внезапно в электрической сети феррорезонанс вреден, он может привести к выходу оборудования из строя. Наиболее опасен основной режим феррорезонанса, когда его частота совпадает с основной частотой системы. Субгармонический феррорезонанс на частотах в 1/5 и 1/3 основной частоты менее опасен, поскольку токи оказываются меньше. Так, большое количество аварий в сетях электроснабжения и прочих энергосистемах связаны именно с феррорезонансом, хотя вначале причина может показаться неявной.
Отключения, подключения, переходные процессы, грозовые перенапряжения могут стать причинами возникновения феррорезонанса. Смена режима работы сети или внешнее воздействие либо авария могут инициировать феррорезонансный режим, хотя это может быть и незаметно на протяжении долгого времени.
Повреждения трансформаторов напряжения часто имеют причиной именно феррорезонанс, который приводит к разрушительному перегреву из-за действия превышающих все мыслимые пределы токов. Для предотвращения подобных неприятностей, связанных с перегревом, принимают технические меры, связанные с постоянным или временным увеличением в резонансной цепи активных потерь, сводя резонансный эффект к минимуму. Такие технические меры заключаются, например, в том, чтобы магнитопровод трансформатора выполнить частично из толстых листов стали.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Что такое феррорезонанс
В цепях, содержащих катушку со стальным сердечником и конденсаторов, резонансные явления, связанные с нелинейным характером индуктивности, называют феррорезонансным. Скачкообразное изменение тока сопровождается изменением на 180 0 фазы тока по отношению к напряжению (опрокидывание фаз).
После точки резонанса т.е. при напряжениях источника, больших напряжения опрокидывания фаз, напряжение на катушке изменяется мало, что связано с переходом по характеристики намагничивания в область магнитного насыщения. Это используется в практике для стабилизации напряжения.
Таким образом, в последовательной феррорезонансной цепи может возникнуть явление резкого изменения тока при небольшом изменении напряжения на входе цепи, а так же при изменении значения емкости или параметров катушки со стальным сердечником. На подстанциях напряжением 220кВ и выше при оперативных переключениях могут образоваться различные последовательные или последовательно-параллельные схемы соединения индуктивности трансформатора напряжения серии НКФ и активного сопротивления его обмоток с емкостью шин и конденсаторов, шунтирующих контактные разрывы воздушных выключателей. В зависимости от соотношений между реактивными элементами в контуре могут возникнуть опасные феррорезонансные явления, при этом на шинах могут появиться повышенные напряжения, а по обмотке ВН трансформатора напряжения серии НКФ будут проходить недопустимые токи, что приводит к их повреждению.
Феррорезонанс токов возникает в схеме, образованной двумя параллельными реактивными сопротивлениями ХL – индуктивным сопротивлением высоковольтной обмотки ТН(НТМИ) и ХC – емкостным сопротивлением ЛЭП. В процессе эксплуатации при однофазных замыканиях наиболее часто высоковольтные обмотки ТН контроля изоляции (ТНКИ) оказываются под напряжением корень из 3Uф при металлическом замыкании и 2-2,2 Uф при регулярно перемежающейся дуге. Cлучаи приложения напряжения более 2,2 Uф на ВЛ редки. Неблагополучным последствием, которой сопутствует феррорезонансному процессу в нормальном режиме является, как правило при включении силовых трансформаторов на напряжение 6-10кВ. Этот режим характеризуется недопустимыми повышениями фазных напряжений низковольтной обмотки и напряжения на выводах разомкнутого треугольника ТНКИ. Увеличение напряжений на низкой стороне ТН не является следствием перенапряжений в электрической сети 6-10кВ, а происходит за счет прохождения токов феррорезонанса в высоковольтных обмотках ТНКИ. Одним из способов понижения напряжений является включение резистора 25 Ом в обмотку разомкнутого треугольника 3Uо ТНКИ.
Феррорезонанс на ВЛ 10кВ возникает при длине от 40 до 60 км. Это хорошо подтверждают данные эксплуатации ТНКИ. Феррорезонанс в сети 6-10 кВ с изолированной нейтралью часто возникает при перегорании предохранителей, а также при обрывах проводов ВЛ с падением их на землю. Лишенные симметричного трехфазного питания потребительские трансформаторы 6-10 кВ во взаимодействии с емкостями остальной сети переходят в режим феррорезонансного преобразователя однофазного напряжения в трехфазное. Если чередование фаз во вновь образованной системе изменится на обратное, напряжение на одной из фаз сети может достичь трехкратного значения.
Условия возникновения феррорезонанса для КЛ возможны при длине 3-4 км. Повреждение ТНКИ в городских сетях (где длина кабелей превышает 3-4 км) как правило не имеют места. Условия феррорезонанса исключены, а дуговые замыкания практически мгновенно переходят в КЗ между фазами.
При резонансе ток определяется только напряжением и активным сопротивлением.
Особенности явления феррорезонанса в трансформаторах напряжения
В электрических сетях 6-35 кВ возникает феррорезонанс в трансформаторе напряжения (ТН) при:
Феррорезонанс особенно опасен для критических перегрузок на основной частоте (50 Гц). Возможны субгармонические резонансы на 1/3 и 1/5 от основной частоты.
Что такое феррорезонанс
Феррорезонанс— это явление резкого возрастания тока, приводящее к перегреву и повреждению преобразователя и сопутствующего электротехнического оборудования.
Вызывающий аварию резонанс наблюдается при возникновении колебательного контура с последовательным соединением индуктивности ТН и емкостью сети.
Почему появляется в трансформаторах
Явление резонанса возникает при незаземленной (изолированной) нейтрали совместно с неполнофазным режимом. При изолированной нейтрали ёмкость сети относительно земли образует последовательное соединение с индуктивностью конструкции незаземленного ТН. Неполнофазный режим возникает при частичном включении фаз, при фазовом разрыве или при коротком замыкании несимметричного типа.
Механизм возникновения явления
Вольтамперная характеристика (ВАХ)
ТН содержат катушки индуктивности с сердечниками из ферромагнитных материалов, имеющими нелинейную вольтамперную характеристику (ВАХ). На линейной ВАХ каждому значению напряжения Ui соответствует единственное значение тока Ii. На нелинейной ВАХ для определенного (резонансного) Uр реализуется режим с двумя различными величинами тока — I1 и I2.
Резонансный переход
При значении Uр на обмотках ТН сопротивление резко падает. Происходит мгновенный переход от I1 к I2, приводящий к «опрокидывание фазы» приложенного Uр, характер которого изменяется с активно-индуктивного на активно-емкостной.
Длительные колебания, вызванные резкими переходами тока в первичных обмотках ТН, вызывают тепловой пробой изоляции.
Какие трансформаторы нейтрализуют эффект феррорезонанса
Для предотвращения скачкообразных токовых перегрузок защитные ТН исполняются совместно с трансформаторами нулевой последовательности (ТНП). Такие специализированные устройства называются антирезонансными.
НАМИТ-10-2
Оборудование относится к типу ТН (Н), А — антирезонансный (А), с естественным масляным охлаждением (М), для измерительных цепей (И), трехфазный (Т), номинальным напряжением 10 кв, вариант исполнения— 2.
Измерительное оборудование состоит из двух единиц, размещенных в общем корпусе:
НАМИ-10-95
Антирезонансное, масляное, измерительное оборудование состоит из:
НАЛИ-СЭЩ-6(10)
Отличием литого исполнения от масляного является высокая пожаро- и взрывобезопасность, что обусловливает применение в особых условиях, например на АЭС.
НАЛИ-СЭЩ-6(10) исполнен посредством четырех активных элементов:
НАЛИ-СЭЩ-1
Оборудование выполнено из однофазных ТН с литой изоляцией типа НОЛ-6(10) и ТНП на основе принципа действия и релейной схемы устройства НАМИТ-10-2.
НАЛИ-СЭЩ-2
Данный тип повторяет НАЛИ-СЭЩ-1 при исключении дополнительной вторичной обмотки, соединенной по схеме открытого треугольника, а также при исключении релейной схемы дешунтирования постоянно включенного ТНП. Явление фоторезонанса в трансформаторе напряжения НАЛИ-СЭЩ-2 не возникает при работе с пониженной рабочей индукцией. Защитная конструкция обеспечивает практически линейную ВАХ.
Резонанс в электросети: причины, борьба с резонансом, природа возникновения
Главными факторами, вызывающими феррорезонансные явления в электросетях, являются ёмкостные и индуктивные элементы, способные образовывать колебательные контуры в моменты переключений. Особенно заметно данный эффект проявляется в силовых трансформаторах, линейных вольтодобавочных трансформаторах, трансформаторах напряжения, шунтирующих контурах и в подобном оборудовании, оснащённом массивной обмоткой.
Виды и возникновение резонанса
Всего выделяют два различных типа таких явлений: резонанс напряжений и токов.
Первые обычно проявляются в контурах, использующих последовательное соединение реактивных элементов. Резонанс токов, в свою очередь, характерен для систем с параллельным соединением ёмкостного и индуктивного элемента. Подобных цепей (LC-контуров) в каждой электрической сети огромное множество, поэтому и переходные процессы для каждой отдельной сети при аварийных и плановых отключениях носят индивидуальный и весьма сложный смешанный характер.
Феррорезонанс возникает при наличии в сети индуктивности, характеризующуюся нелинейной вольт-амперной характеристикой.
Данной особенностью обладают катушки индуктивности, сердечник которых выполнен из ферромагнитного материала. В частности, это относится к широко распространённым сейчас трансформаторам напряжения серии НКФ. Такой негативный эффект обусловлен малой величиной индуктивного и омического сопротивления относительно реакторов и силовых трансформаторов.
Причины возникновения резонансных явлений
При подключении трансформаторов напряжения, в сети образуются последовательно соединённые LC-цепочки, представляющие собой резонансный контур. В таком сочетании, когда индуктивный элемент с нелинейной вольт-амперной характеристикой подключается последовательно к ёмкостному элементу, напряжение на данном участке цепи можно охарактеризовать как активно-индуктивное.
Такое положение дел обусловлено тем, что в индуктивных компонентах амплитуда напряжения опережает амплитуду тока на угол в 90 градусов, в то время как в ёмкостных компонентах, напротив, отстаёт на 90 градусов от тока.
По истечении некоторого промежутка времени напряжение на индуктивном компоненте достигает пикового значения, магнитопровод насыщается, в то же время на ёмкостном компоненте напряжение продолжает возрастать. Резонанс напряжений наступает в тот момент, когда напряжение на индуктивности равно таковому на ёмкостном компоненте.
Дальнейшее увеличение приложенного к контуру напряжения приводит к изменению его характера на активно-ёмкостной.
Явление быстрого перехода активно-индуктивного типа приложенного напряжения в активно-ёмкостной получило название «опрокидывание фазы». Данный эффект положен в основу работы ряда специальных электронных приборов, но в то же время незапланированное возникновение подобных процессов в сетях таит в себе опасность для электрического оборудования.
Резонанс токов может вызывать те же последствия, что и резонанс напряжений, только он возникает в цепях, в которых LC-цепочки соединены параллельно.
Интересное видео о феррорезонансе в электросетях:
Последствия и борьба с резонансными явлениями
На силовых трансформаторах с рабочим напряжением 220 кВ в результате резонанса напряжение может скачкообразно увеличиться до 300 кВ, а ток мгновенно поднимается до такой силы, при которой обмотки разрушаются в результате теплового воздействия (электродинамический удар).
Чтобы подобных явлений не возникало, в программах переключений обычно планируют специальные операции, исключающие протекание процессов резонанса, а в систему шин нередко специально устанавливают элементы, сопротивление которых призвано бороться с явлением резонанса.
Явление феррорезонанса
Иногда в электрических цепях может возникать явление феррорезонанса. Что это за явление и каковы его последствия мы попытаемся разобраться в этой статье.
В электрических цепях содержащих емкость и нелинейную индуктивность плавное изменение напряжения может приводить к резким скачкам амплитуды и фазы тока, и, наоборот, плавное изменение тока может приводить к резким скачкам амплитуды и фазы основной гармоники напряжения на некоторых участках цепи. Итак, феррорезонанс – это явление изменения угла сдвига между основными гармониками тока и напряжения при изменении тока или напряжения источника питания, обусловленное нелинейностью катушек со сталью. Подобные явления принципиально не возможны в линейных цепях.
Точный анализ феррорезонанса с учетом несиносоидальности формы кривых является задачей очень трудной, поэтому в дальнейшем применяются упрощения, при которых ток, магнитный поток и напряжение заменяются эквивалентными синусоидами, а индуктивность принимается условно-нелинейной и зависящей от тока (рисунок ниже).
Для упрощения расчетов в дальнейшем предполагается, что катушки со сталью не имеют потерь и, что угол сдвига фаз между эквивалентными синусоидами напряжения и тока катушки φ = π / 2, а также зависимость между их действующими значениями задана некоторым графиком, аналогичным зависимости, представленной на рисунке ниже.
Феррорезонанс напряжений и токов будет рассмотрен в отдельных статья.