Что такое энергия тьмы

Что такое энергия тьмы

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

• Садимся в позу лотоса/полулотоса. В общем в любую медитативную..
• Отождествляем себя с Тьмой. Можно самовнушением, произнося мысленно фразу: «Я-это Тьма, а Тьма-это Я». Можно просто визуализацией и настроем. Некоторые сразу могут войти в это состояние. У кого как лучше получается.
• Доходим до такого состояния, когда ощущаешь, что Тьма вокруг. Она обьемная. Ощущаешь ее всем существом. Трудно это описать. Это надо ощущать.
• Ощущаем свой энергетический кокон. Ощущаем Тьму, окутывающую его. Создаем вокруг своего кокона такую же оболочку по форме, но с большим диаметром. Получается своеобразная «матрешка». Начинаем уменьшать размеры внешней оболочки. При этом Тьма, попавшая между двух оболочек, начинает впитываться в ваш энергетический кокон, т.е. поглощаться им, одновременно уплотняя его.
• Даем Тьме время наполнить пространство вокруг и повторяем предыдущий шаг столько, сколько нужно.

Еще способ:
Geshoesh shantah aehtos
Geshoesh shantah aehtos
Geshoesh shantah aehtos
Bantara eshta
Накачивает пространство вокруг и в нутри оператора «начальной тьмой» до полного заполнения круга силы.
Вызов энергии ночи, ноктурнист вызывает словами: Гекас-Гекас Эсте Бебелой! Этими словами при каждом ритуале вызывается энергия ночи, энергия тьмы. Если произносить как мантру, то вы начнете сливаться с Ночью. Накапливает силу ночи, вступает в контакт с Тьмой, сливается с ночным мраком.

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Очередной способ вызова ночной энергии. Не подойдет для вхождения во Тьму и слияния с Ночью, эти слова являются именно призывом ночных сил, необходимых для ритуала или мгновенных действий.
URTANSEJLA
DARKANSEJLA
DARKNESSAN
OVERAN!

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Растворение во Тьме

Источник

Темная энергия: таинственный двигатель Вселенной

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

На рубеже 21-го века произошел ряд космологических достижений, которые сыграли решающую роль в научном прогрессе. Концепция теории Большого взрыва непреднамеренно привела к открытию темной материи. Это, в свою очередь, свидетельствовало о существовании темной энергии, которая приводит к необъяснимому ускорению расширяющейся Вселенной.

От теории Большого Взрыва к темной материи и темной энергии

Когда была задумана теория Большого Взрыва, она дала ответы на множество вопросов, но также открыла для астрофизиков и физиков частиц множество новых вопросов. На некоторые вопросы ответила инфляционная гипотеза теории Большого взрыва. Но научное движение, начавшееся из-за теории Большого взрыва, натолкнулось на открытие, которое было совершенно необъяснимым.

Изучая гравитационные эффекты галактик, было обнаружено, что масса галактики на самом деле в шесть раз превышает массу видимых звезд в этой галактике. Остальная масса, большая часть массы в космосе, фактически невидима для нас; его гравитационные эффекты, однако, измеримы. Эта невидимая материя получила название темной материи.

Ученые с юмором начали называть частицы этой материи WIMP, или Слабо взаимодействующими массивными частицами. Они должны быть массивными, как предполагают их гравитационные эффекты. «Слабо взаимодействующие» в названии происходят из-за отсутствия у них других взаимодействующих сил.

WIMP теоретически необходимы для полного согласования наших существующих теорий материи, стандартной модели материи. В течение долгого времени физики экспериментировали с кварками и лептами, чтобы выяснить, как темная материя может существовать во Вселенной, но ответа на этот вопрос найдено не было.

Астрофизики не смогли увидеть их в реальном мире, несмотря на то, что некоторые из лучших умов были заняты их поиском.

Однако поиски не зашли в тупик. Например, расширение стандартной модели материи с помощью суперсимметрии могло бы объяснить существование темной материи.

Эта теория была настолько совершенна, что в 1990-х годах она достигла научного консенсуса. Однако, здесь было еще одно противоречие, которое озадачило научное сообщество того времени.

Аномалия расширения: открытие темной энергии

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Гравитация является одной из четырех физических сил и единственной, которая работает на больших расстояниях. Это еще и сила притяжения.

Таким образом, вся материя во Вселенной должна притягивать всю другую материю во Вселенной силой гравитации, тем самым искривляя пространство-время, чтобы противостоять расширению, которое продолжается с самого большого взрыва. Это оставляло две возможные альтернативы для Вселенной в долгосрочной перспективе.

Другая возможность заключается в том, что не хватает материи, а следовательно, и гравитационной энергии, чтобы полностью остановить расширение Вселенной, хотя оно и замедлится. Вместо того чтобы сжиматься, расширение будет продолжаться до тех пор, пока плотность энергии не станет настолько мала, что она схлопнется сама на себя, создавая мертвую, холодную Вселенную.

Какая из двух возможностей будет реализована, зависит от энергии и материи, содержащихся во Вселенной.

В 1998 году американские ученые Саул Перлмуттер, Брайан Шмидт и Адам Рисс обнаружили, что на самом деле все обстоит иначе: расширение Вселенной вовсе не замедляется, а, наоборот, ускоряется. В результате Вселенная расширяется с возрастающей скоростью.

Единственным логическим объяснением было бы то, что за этим расширением должна стоять какая-то другая энергия. Что это за энергия, нам неизвестно. Но точно так же, как невидимая материя, увеличивающая массу вселенной, называлась темной материей, так и невидимая энергия, ускоряющая расширение вселенной, была названа темной энергией.

Что мы знаем о темной энергии?

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Сходство между темной материей и темной энергией не заканчивается на имени. Как и в случае с темной материей, о темной энергии известно немногое. Мы не знаем, откуда на самом деле берется темная энергия и на что она похожа.

Что мы знаем, так это сколько ее должно быть, учитывая скорость ускорения во вселенной. И это много: нормальная материя и энергия, вещество, которое первоначально считалось всем, что есть во Вселенной, составляет только 5% от реальной вселенной. Темная материя составляет целую четверть, 25% всего содержимого Вселенной. А темная энергия, составляющая остальные 70%, составляет большую часть содержимого Вселенной. По сути, это означает, что подавляющее большинство, около 95%, нашей Вселенной невидимо для нас.

Но есть еще много вопросов на эту тему. Если бы темная энергия Вселенной была равномерно распределена, как любое другое энергетическое поле, она была бы разбавлена расширением, что привело бы к снижению скорости расширения с течением времени. Но это не было замечено до сих пор, подразумевая, что плотность темной энергии остается постоянной с течением времени.

Выход за пределы темной энергии

Темную энергию так трудно найти, потому что она не взаимодействует с нормальной материей, и то, что мы ничего о ней не знаем, делает ее такой аномалией. Существует установленная парадигма, картина реальности, которая регулируется как стандартной моделью, так и общей теорией относительности. Эта парадигма содержит материю, темную материю и темную энергию, хотя мы мало что знаем о большинстве содержания этой парадигмы.

И стандартная модель, и общая теория относительности безупречно предсказывают результаты, которые также были доказаны экспериментально. Тем не менее существует острая необходимость в теории, которая охватывала бы их обоих, примиряла бы их различия и, возможно, лучше отвечала бы на вопросы о строительных блоках Вселенной. Это создает потребность в теории всего, единой теории, которая, если бы она была задумана, могла бы объяснить функционирование вселенной таким образом, о котором раньше не думали.

Общие вопросы о темной энергии

Что такое темная энергия?
Темная энергия относится к таинственной энергии, которая отвечает за ускорение расширения Вселенной.

Что бы сделала Единая теория?
Единая теория необходима, чтобы свести воедино понимание стандартной модели и общей теории относительности, чтобы, возможно, обеспечить лучшее понимание темной материи и темной энергии.

Каков состав Вселенной?
Только 5% Вселенной состоит из нормальной материи и энергии, 25% состоит из темной материи, а большая часть, 70%, состоит из темной энергии.

Источник

10 ведущих теорий на тему темной энергии

Человечество аккумулировало огромное количество информации о нашей Вселенной и о том, как она работает. Мы гордимся тем, что являемся самым умным видом на Земле, а также, на текущий момент, и во всей Вселенной. Однако информация, которую мы собрали о структуре нашей Вселенной, получена на основе 4%, которые мы можем наблюдать, измерить и проанализировать — обычного вещества. Оставшиеся 96% — это «темные» субстанции. Темные они потому, что мы ничего о них не знаем (и потому что физикам не хватает фантазии, когда дело доходит до наименований).

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Исследования темной энергии имеют важное значение

Из этих 96% порядка 68% — это темная энергия. Это самая большая компонента Вселенной, и к тому же самая загадочная. Тысячи ученых по всему миру работают над расшифровкой этой загадочной энергии, которая определяет структуру нашей Вселенной на самых больших масштабах.

Без темной энергии наша Вселенная просто схлопнулась бы — под действием собственной гравитации, медленно сжалась бы в точку. Так что, хотя мы и не знаем, что это за энергия, нам стоит сказать ей спасибо. Перед вами десять лучших теорий на тему темной энергии.

Свойство пространства

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Теория пространства обязана своим появлением Эйнштейну

Эта теория вышла из теории гравитации Эйнштейна, точнее из того факта, что «пустое пространство» может иметь собственную энергию — так называемую космологическую постоянную. Эйнштейн также считал, что пространство может появиться из ниоткуда, и чем больше пространства появляется, тем больше, соответственно, энергии может быть в нем заключено.

Это могло бы объяснить быстрое расширение Вселенной, которое мы наблюдаем. Такая Вселенная могла бы расширяться бесконечно долго, пока каждый объект не окажется так далеко от любого другого объекта, что мир погрузится в полную тьму и холод.

Теория всего

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

А нужно ли вообще искать темную энергию?

Многие астрономы считают, что поиск темной энергии — бесполезное занятие. Вместо этого они ратуют за неуловимую «теорию всего», которая сама по себе разрешила бы проблему темной энергии.

Эта теория должна объяснить поведение всех объектов во Вселенной — от очень больших до очень маленьких. Пока что наши теории о том, как работает Вселенная, делятся на крупномасштабные теории (вроде теории гравитации) и мелкие теории (вроде квантовой механики).

Хотя решение проблемы темной энергии таким образом логически обосновано, нахождение этой теории оказалось невозможным даже для самых ярких умов в физике. Нормальные законы физики будто «ломаются», достигая квантового уровня. Поиск продолжается в любом случае.

Новая фундаментальная сила

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

У фундаментальной теории свое объяснение

Все фундаментальные взаимодействия или силы, которые мы знаем (гравитация, электромагнетизм, слабое и сильное взаимодействие), работают в разных диапазонах. Некоторые влияют только на объекты атомарных размеров, другие же определяют движение планет и формирование галактик.

Эта теория темной энергии утверждает, что существует фундаментальное взаимодействие, которого мы пока не нашли и которое действует на гигантских масштабах, которые можно наблюдать только после достижения Вселенной определенных размеров. Оно работает в противовес гравитации и растягивает объекты прочь друг от друга.

Ученые полагают, что поскольку эта сила действует на таких больших масштабах, мы пока не сталкивались с ней в повседневной жизни и на измерения, проводимые на Земле, она тоже не влияет. Никто не знает, временная или постоянная эта сила. В зависимости от ответа на этот вопрос, Вселенная будет лишь расширяться вечно и станет холодной, либо расширяться и сжиматься периодически время от времени.

Теория гравитации Эйнштейна ошибочна

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Попробуйте сказать одному из умнейших физиков, которые когда-либо жили на земле, что его (по общему признанию) самая знаменитая теория неверна… ну да, это сложно представить. Теория гравитации Эйнштейна утверждает, что всякое тело во Вселенной притягивается к любому другому телу, и сила притяжения зависит исключительно от масс объектов и расстояния между их центрами.

И все же некоторые физики считают, что эта теория может быть ошибочна, и разрабатывают новые теории гравитации, которые могли бы объяснить темную энергию. В этих теориях они оборачивают влияние гравитации на крупных масштабах так, что каждый объект отталкивает любой другой.

Хотя эти теории не могут похвастать серьезной экспериментальной поддержкой (а модель гравитации Эйнштейна проверялась многократно), они объясняют, почему Вселенная расширяется. Согласно этим новым моделям гравитации, наша Вселенная снова достигнет состояния холодной тьмы после быстрого расширения.

Если вам интересны новости науки и технологий, подпишитесь на нас в Google Новостях и Яндекс.Дзен, чтобы не пропускать новые материалы!

Замедление времени

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Многие хотели бы замедлить время

Если вы когда-нибудь смотрели фильм «Интерстеллар», вы точно слышали об эффекте замедления времени. Это явление происходит, когда объекты движутся близко к скорости света: время замедляется.

Та же идея представлена в парадоксе близнецов, когда один близнец отправляется на космический корабль, который движется на скорости света, а его брат остается на Земле. Когда они снова встречаются после нескольких лет разделения, близнец на Земле оказывается значительно старше своего брата-космонавта.

Недавно Эдвард Кипреос, профессор Университета Джорджии, в статье представил мнение, что только движущийся объект сам по себе подвергается замедлению времени. (Обычно человек-наблюдатель быстро движущегося объекта также испытывает эти эффекты).

Из этого следует, что в прошлом время должно было двигаться быстрее. Это устраняет необходимость иметь отталкивающую силу или вещество, поскольку кажущееся расширение Вселенной будет простым просчетом расстояний, которые были затронуты замедлением времени.

Если эта теория верна, она не только вступит в противоречие с другой известной теорией Эйнштейна (специальной теорией относительности), но и будет означать, что наша Вселенная статична. Она никогда не расширяется и не сжимается.

Экзотическая новая частица

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Поскольку некоторые частицы ненаблюдаемы в принципе, эта идея вполне имеет право на жизнь

Эта теория на тему частиц и полей витает в воздухе уже столетия. Мы знаем, что электрон создает электрическое поле, а также, совсем недавно, гравитационное поле стали ассоциировать с «гравитоном» — «частицей-переносчиком силы» гравитации. Физики частиц и теоретики нормально относятся к мысли, что энергия отдельного поля должна переноситься частицами, а не самим полем.

Эту концепцию можно применить на темную энергию, и тогда темная материя (на которую приходятся остальные 27% Вселенной) будет ее частицей-переносчиком силы. Поскольку некоторые частицы ненаблюдаемы в принципе (тот же гравитон), эта идея вполне имеет право на жизнь. Только вот доказательств, говорящих в ее пользу, крайне мало. У нас просто нет способа измерить хоть какое-нибудь свойство, связанное с темной энергией или темной материей.

Теории f(R)

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Кривизна Вселенной может дать ответы о темной энергии

Теории f(R) — это модели нынешней кривизны Вселенной (где кривизна обозначается как R). В 2007 году ученые из Университета Чикаго показали, что при определенном значении R может быть создана модель Вселенной, в которой не требуется темная энергия для объяснения расширения Вселенной.

Этот тип Вселенной сглаживает себя таким образом, что его общая кривизна сводится к минимуму, создавая сверхгравитационно-подобную силу, которая может либо притягивать, либо отталкивать объекты в зависимости от поставленных условий.

Теоретики Университета Чикаго согласны в том, что для выполнения этой теории дополнительная сила должна исчезать там, где сила гравитации относительно сильна (например, в масштабах планет и галактик), и проявляться только в самых больших масштабах. Группа астрономов из Пекинского университета начала проводить измерения кластеров, чтобы убедиться, что теория f(R) может быть правильным описанием нашей Вселенной.

Множественные вселенные и антропный принцип

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Теория множественных Вселенных

Один из грандиознейших провалов современной физики состоит в прогнозе действительной величины темной энергии. Квантовая теория предсказывает очень малое число, но физики рассчитывают число в 10 120 раз больше.

Вот здесь-то в игру вступает антропный принцип. Он состоит в том, что фундаментальные константы физики и химии (такие как скорость света, гравитационная постоянная и т. п.) «подходят» для поддержания жизни в отдельно взятой Вселенной, но могут иметь иные значения в других вселенных. В бесконечном множестве параллельных вселенных, кажется вполне вероятным, что может появиться и наша вселенная, с заданными значениями темной энергии, подходящей для формирования жизни.

Виртуальные частицы

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Темную энергию можно получить виртуально?

Квантовая механика очень странная. Она позволяет всяким штукам появляться из ниоткуда и уходить в никуда, разрушая все идеи, которые нам закладывали в голову в старших классах. «Материя не может быть создана или уничтожена», учили нас. Она должна лишь переходить из одного состояния в другое.

Эта теория берет за основу идею виртуальных частиц — мелких частичек материи, которые появляются и исчезают. Это постоянное появление и исчезновение частиц высвобождает энергию, потому что материя преобразуется в энергию, когда эти частицы исчезают.

Физики считают, что именно так пространство само по себе может набрать достаточно непрерывной энергии, чтобы создать «отрицательное давление», которое вызывает расширение Вселенной. Если эта теория верна, энергетическое пространство, получаемое от этих виртуальных частиц, может быть таинственной темной энергией, и наша Вселенная будет продолжать расширяться до тех пор, пока этот процесс протекает.

Квинтэссенция

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

В этой вселенной много темной энергии

Количество теорий в этом списке показывает, насколько мы далеки от полного понимания нашей Вселенной. Каждая теория вносит свой вклад в будущее развитие нашего мира, и понять, какая из них верна, пока не представляется возможным.

Расшифровка темной энергии может открыть двери в совершенно новый раздел физики, либо кардинально поменять уже существующие. Поэтому многие физики и астрономы пытаются разгадать это большое, загадочное, «темное вещество», которое управляет эволюцией нашей Вселенной.

Последняя теория темной энергии в нашем списке будет и самой странной. Вселенная, в которой преобладает «квинтэссенция», будет полна «энергетической жидкости». Другие физики называют эту энергию «фантомной энергией».

Идея заключается в том, что эта квинтэссенция меняется со временем, а ее плотность энергии увеличивается. Судьба такой Вселенной закончится Большим Разрывом, когда Вселенная буквально взорвется, поскольку сами атомы не смогут противостоять силе, которая их растаскивает и разрывает на части.

Источник

Тёмная энергия

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмыTV Tropes
Для англоязычных и желающих ещё глубже ознакомиться с темой в проекте TV Tropes есть статья Casting a Shadow. Вы также можете помочь нашему проекту и перенести ценную информацию оттуда в эту статью.

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Тёмная энергия — это вид энергии, введённый учёными, чтобы объяснить расширение Вселе… А, это не то…

Тёмная энергия — это последняя глава в Half-Life… Как, тоже не то?!…

Эта стихийная способность, да и сама стихия, встречается весьма часто (даже чаще, чем контроль металла). Зловещая, мертвенно-холодная энергия, нередко оставляющая незаживающие раны и инвертирующая счастье-радость. Мечта любого Тёмного властелина, мраккультиста или обиженного на жизнь социопата… Жизненная сила плохих парней, демонов и самого Сатаны… Антипод света… Нечто чуждое и враждебное… Леденящее кровь зрелище — чёрные как смоль дымоподобные эманации Тьмы… ТЁМНАЯ ЭНЕРГИЯ.

Стихия тьмы и тёмной энергии вместе со светом и природной магией стоит на «втором круге» — концепции, подразумевающей более тонкие и потаённые стихийные элементы, чем четыре остальных — Огонь, Вода, Земля, Воздух.

Но вот в концепцию Тьмы (да-да, с большой буквы, аспект Тёмной энергии) входит целых три сверхъестественные дисциплины:

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

Подобно фотокинетикам, тенеброманты могут иметь свою слабость, только обратную — во тьме ночной сильны как никогда, при свете дня — ничегошеньки не стоят.

Источник

Часто задаваемые вопросы о тёмной энергии

Что такое энергия тьмы. Смотреть фото Что такое энергия тьмы. Смотреть картинку Что такое энергия тьмы. Картинка про Что такое энергия тьмы. Фото Что такое энергия тьмы

[Шон Майкл Кэррол – космолог, профессор физики, специализируется на тёмной энергии и ОТО, занимается исследованиями на факультете физики в Калифорнийском Технологическом институте – прим. перев.]

Что такое «тёмная энергия»?

Это то, что заставляет Вселенную ускоряться, если на самом деле существует некая сущность с таким свойством.

Видимо, я должен спросить – что означает «ускорение» Вселенной?

Но это какое-то объяснение простыми словами. Можно ли это объяснить более абстрактно и научно?

Относительное расстояние между удалёнными галактиками можно просуммировать в единый показатель, «масштабный коэффициент», часто записываемый, как a(t) или R(t). Это, по сути, «размер» Вселенной – хотя и не совсем, поскольку Вселенная может быть бесконечно большой. Точнее говоря, это относительный размер пространства от одного момента времени до другого. Расширение Вселенной означает увеличение масштабного коэффициента со временем. Ускорение Вселенной означает его увеличение с ускорением – то бишь, с положительной второй производной.

Значит ли это, что постоянная Хаббла, измеряющая скорость расширения, растёт?

Нет. «Постоянная» Хаббла (или «параметр» Хаббла, раз уж он изменяется со временем), описывает скорость расширения, но это не просто производная масштабного коэффициента: это производная, делённая на сам коэффициент. Почему? Потому, что так она становится безразмерной и не меняется при смене соглашений. Константа Хаббла – это множитель, показывающий скорость изменения масштабного коэффициента Вселенной.

Если Вселенная замедляется, постоянная Хаббла уменьшается. Если постоянная Хаббла увеличивается, Вселенная ускоряется. Но существует промежуточный режим, при котором Вселенная расширяется, но постоянная Хаббла уменьшается – и мы думаем, что наша Вселенная живёт именно в таком режиме. Скорости отдельных галактик увеличиваются, но удвоение размера Вселенной отнимает всё больше и больше времени.

Иначе говоря: закон Хаббла соотносит скорость галактики v с расстоянием до неё d в уравнении v = H * d. Эта скорость может увеличиваться, даже если параметр Хаббла уменьшается; если он уменьшается медленнее, чем растёт расстояние.

А что, астрономы реально ждали миллиард лет, чтобы провести повторное измерение скоростей галактик?

Нет. Мы меряем скорости очень удалённых галактик. Поскольку свет перемещается с фиксированной скоростью, один световой год за год, мы смотрим в прошлое. Реконструкция истории скоростей и их отличия в прошлом открывает нам факт ускорения Вселенной.

А как измерить расстояние до удалённой галактики?

Это непросто. Самый надёжный метод – через «стандартную свечу» – некий достаточно яркий объект, который видно издалека, и чья собственная яркость известна заранее. Затем можно подсчитать расстояние до него, просто измерив его яркость. Чем он тусклее, тем дальше.

К сожалению, стандартных свечей не существует.

Так как же они поступили?

К счастью, у нас есть метод, чуть уступающий наилучшему: стандартизируемые свечи. Сверхновые особого типа, типа Ia, очень яркие, и обладают не совсем, но примерно одинаковой яркостью. К счастью в 1990-х Марк Филипс открыл удивительное взаимоотношение между собственной яркостью и временем, которое требуется сверхновой для того, чтобы потускнеть после достижения максимальной яркости. В итоге, если мы измеряем яркость, и она со временем падает, мы можем сделать поправку на эту разницу, и построить универсальную шкалу яркостей, которую можно использовать для измерения расстояний.

А почему сверхновые типа Ia оказались стандартизируемыми свечами?

Мы точно не уверены – в основном, всё подсчитано эмпирически. Но есть идея – мы думаем, что эти сверхновые получаются, когда белые карлики притягивают материю снаружи, пока не достигнут предела Чандрасекара и не взорвутся. И поскольку это ограничение одинаково по всей Вселенной, неудивительно, что у сверхновых получается схожая яркость. Отклонения, вероятно, происходят из-за разных составов звёзд.

А как узнать, когда возникнет сверхновая?

Никак. Они появляются редко, где-то раз в сто лет для средней галактики. Поэтому нужно смотреть сразу на кучу галактик широкоугольными камерами. Конкретно, сравниваются изображения неба, сделанные в разные моменты времени, отстоящие на несколько недель друг от друга (обычно изображения делаются в новолуние, когда небо темнее всего) – как раз такое время требуется сверхновым, чтобы резко прибавить в яркости. При помощи компьютеров изображения сравниваются в поисках новых ярких точек. Затем эти точки изучаются, чтобы выяснить, действительно ли это сверхновые типа Ia. Это, конечно же, очень тяжело, и было бы невозможным, если бы не ряд последних технологических новшеств – камеры с ПЗС-матрицами и гигантские телескопы. Сегодня можно быть уверенным, что в результате наблюдений сверхновые можно будет собирать десятками – но когда Перлмуттер начинал работу со своей группой, это было совсем не очевидно.

И что же они обнаружили, проделав такую работу?

Большинство астрономов (почти все) ждали, что Вселенная будет замедляться – галактики будут притягиваться друг к другу через гравитацию, что и замедлит их движение. Но оказалось, что удалённые сверхновые получаются более тусклыми, чем это ожидалось – признак того, что они расположены дальше, чем было предсказано, то есть, Вселенная ускоряется.

Почему космологи так быстро приняли этот результат?

Ещё до объявления результатов в 1998 году было ясно, что с Вселенной что-то не так. Было похоже на то, что возраст Вселенной был меньше, чем возраст её старейших звёзд. Материи было меньше, чем предсказывали теоретики. На крупных масштабах структуры были не такие выраженные. Открытие тёмной энергии решило все эти проблемы одним махом. Всё встало на свои места. Поэтому, хотя люди справедливо осторожничали, после этого наблюдения Вселенная стала намного понятнее.

А откуда мы знаем, что сверхновые выглядят тусклее не из-за того, что их что-то заслоняет, или из-за того, что в прошлом всё было по-другому?

Вопрос правомерный, и две команды, изучающие сверхновые, очень активно трудились над его анализом. Никогда нельзя быть уверенным на 100%, но можно постоянно получать новые подтверждения. К примеру, астрономы давно знали, что заслоняющая материя рассеивает голубой свет легче, чем красный, в результате чего звёзды, находящиеся за облаками газа и пыли, «краснеют». Можно искать такое покраснение, и в случае со сверхновыми оно оказывается незначительным. Более того, сейчас у нас есть обилие независимых доказательств, приводящих к одному и тому же выводу – так что, похоже, что изначальные измерения при помощи сверхновых нам не врали.

А правда, что есть независимые доказательства существования тёмной энергии?

О, да. Простейший аргумент – вычитание. Реликтовое излучение сообщает нам полное количество энергии, включая материю, во Вселенной. Локальные измерения галактик и скоплений дают общее количество материи. Оказывается, что материи существует всего 27% от общей энергии, что оставляет нам 73% в форме какой-то невидимой нам субстанции, но не материи: «тёмной энергии». Такого количества хватает для объяснения ускорения Вселенной. Другие доказательства – акустические барионные осцилляции (волны на крупномасштабных структурах, чей размер помогает изучать историю расширения Вселенной) и эволюция структур по мере расширения.

Ну ладно, и что такое тёмная энергия?

Рад, что вы спросили! У тёмной энергии есть три главных свойства. Во-первых, она тёмная. Мы не видим её, и насколько нам говорят измерения, она вообще не взаимодействует с материей (если взаимодействует, то это превосходит возможности наших наблюдений). Во-вторых, она равномерно распределена. Она не скапливается в галактиках и скоплениях, или же мы обнаружили бы её, изучая их динамику. В-третьих, она постоянна. Плотность тёмной энергии (количество энергии на кубический световой год) остаётся постоянным по мере расширения Вселенной. Она не рассеивается, подобно материи.

Два последних свойства позволяют нам называть её «энергией», а не «материей». Тёмная энергия не ведёт себя, как частицы, обладающие локальной динамикой и рассеивающиеся по мере расширения Вселенной. Тёмная энергия – это что-то другое.

Интересная история. А чем конкретно может оказаться тёмная энергия?

Ведущий кандидат на это место – самый простой: «энергия вакуума» или «космологическая константа». Поскольку мы знаем, что тёмная энергия равномерно распределена и постоянна, то первое, что приходит в голову – это что она идеально распределена и идеально постоянна. Это будет энергия вакуума: фиксированное количество энергии, которой обладает каждый кусочек космоса, и которое не меняется ни при переходе от одного места к другому, ни с течением времени. Одна стомиллионная эрга на кубический сантиметр, если вам интересно.

А что, вакуумная энергия ничем не отличается от космологической константы?

Да. Не верьте тому, кто отрицает это. Когда эту идею впервые придумал Эйнштейн, он не думал о ней, как об «энергии», он думал о ней, как о модификации способа, которым кривизна пространства-времени взаимодействует с энергией. Но оказывается, что это одно и то же. Если кто-то не поверит в это, спросите, какими наблюдениями он собирается отличать их друг от друга.

А разве вакуумная энергия происходит не от квантовых флуктуаций?

Не совсем. Целая гора всяких явлений может создавать энергию пустого пространства, и некоторые из них полностью классические, не имеющие ничего с квантовыми флуктуациями. Но к классическим явлениям, приводящим к возникновению этой энергии, добавляются ещё и квантовые флуктуации. Они довольно сильные, и это приводит нас к проблеме космологической константы.

Что за проблема космологической константы?

Если бы нам была известна только классическая механика, то космологическая константа была бы просто числом – для неё не было бы причин быть особенно большой или малой, положительной или отрицательной. Мы просто измерили бы её и успокоились.

Но наш мир не классический, а квантовый. И в квантовой теории поля классические величины должны подвергаться квантовым поправкам. В случае энергии вакуума эти поправки имеют вид энергии виртуальных частиц, флуктуации которых происходят в вакууме пустого пространства.

Мы можем сложить количество энергии, получающееся в этих флуктуациях, и получим бесконечность. Это, по-видимому, неправда, и мы подозреваем, что преувеличиваем подсчёт. Например, в этот грубый подсчёт входят флуктуации всех размеров, включая длины волн меньше планковской длины, на которых, возможно, пространство-время теряет свою концептуальную достоверность. Если мы просуммируем только длины волн большие, чем планковская длина, мы получим прикидку величины космологической константы.

И в результате выходит в 10 120 больше наблюдаемого значения. Эта разница и есть проблема космологической константы.

Почему космологическая константа такая маленькая?

Никто не знает. Пока мы не умели работать со сверхновыми, многие физики верили в существование скрытой симметрии или динамического механизма, обнуляющего космологическую константу, поскольку мы были уверены в том, что она меньше наших оценок. Теперь же нам нужно объяснить как то, почему она маленькая, так и то, почему она ненулевая. А, кроме того, существует проблема совпадения – почему совпадают порядки величин плотности тёмной энергии и материи.

Вот, насколько всё плохо: в настоящий момент лучшим объяснением значения космологической константы служит антропный принцип. Если мы живём в мультивселенной, в которой значения энергии вакуума отличаются в разных районах, можно сказать, что жизнь может существовать (а также делать наблюдения и выигрывать нобелевские премии) только в тех районах, в которых энергия вакуума гораздо меньше оценочной. Если бы она была большой и положительной, галактики и даже атомы разорвало бы. Если бы она была большой и отрицательной, Вселенная быстро бы реколлапсировала. В таких ситуациях типичный наблюдатель получил бы значение, близкое к наблюдаемому. Стивен Вайнберг сделал это предсказание в 1988 году, задолго до открытия ускорения Вселенной. Но он не сильно его отстаивал, просто сказал, что «если всё будет именно так, то мы увидим примерно следующее». С этими подсчётами много проблем, особенно, когда мы начинаем вовлекать «типичных наблюдателей», даже если поверить в существование мультивселенной. Я с удовольствием поразмышляю о мультивселенной, но довольно скептически отношусь к нашей возможности сделать какие-либо предсказания, касающиеся наблюдаемых величин, относящихся к этой теоретической платформе.

Нам нужна простая формула, предсказывающая космологическую константу как функцию всех остальных констант природы. У нас её нет, но мы стараемся её вывести. Предлагаемые варианты работают с квантовой гравитацией, дополнительными измерениями, червоточинами, суперсимметрией, нелокальностью и другими интересными, но умозрительными идеями. Пока ещё ничего не прижилось.

Влияли ли какие-либо эксперименты на развитие теории струн?

Да: ускорение Вселенной. До этого теоретики предполагали необходимость описания Вселенной с нулевой энергией вакуума. Когда же появился шанс отличия её от нуля, встал вопрос, можно ли впихнуть этот факт в теорию струн. Оказалось, что это не так сложно сделать. Проблема в том, что если найти одно решение, находится абсурдно большое количество других. Такой ландшафт теории струн убивает надежду на одно уникальное решение, способное объяснить реальный мир. Это было бы неплохо, но науке приходится брать то, что предлагает природа.

Что за проблема совпадения?

При расширении Вселенной материя размывается, а плотность тёмной энергии остаётся постоянной. Значит, относительная плотность тёмной энергии и материи со временем сильно меняется. В прошлом материи было больше, в будущем тёмная энергия будет доминировать. Но сегодня их примерно поровну. Когда числа могут отличаться в 10 100 раз или больше, разница в три раза не считается. С чего это нам так повезло родиться, когда тёмной энергии достаточно много, чтобы её открыли, и достаточно мало, чтобы такие попытки заслужили нобелевку? Либо это совпадение (почему бы и нет), либо мы живём в какое-то особенное время. Частично по этой причине люди так охотно принимают антропный принцип. Вселенная получается какой-то несообразной.

Если у тёмной энергии постоянная плотность, а пространство расширяется, значит ли это, что энергия не сохраняется?

Да, и это нормально.

В чём разница между тёмной энергией и энергией вакуума?

Тёмная энергия – общепринятый термин равномерно распределённой и постоянной субстанции, заставляющей Вселенную ускоряться. Энергия вакуума – один из кандидатов на роль тёмной энергии, который идеально распределён и постоянен.

Так что, есть другие кандидаты на роль тёмной энергии?

Да. Вам нужно просто что-то довольно равномерно распределённое и постоянное. Выясняется, что большинство таких вещей теряют плотность, поэтому найти источники постоянной энергии непросто. Простейшая и лучшая из идей – квинтэссенция, просто скалярное поле, заполняющее Вселенную, и медленно изменяющееся со временем.

А идея квинтэссенции естественна?

Не особенно. Изначально планировалось, что рассмотрев нечто динамическое и изменяющееся, а не просто фиксированное, можно найти какое-то хитроумное объяснение тому, почему тёмная энергия такая слабая, и может быть объяснить и проблему совпадения. Но эти надежды не оправдались.

Как ещё мы можем проверить идею квинтэссенции?

Что такое w?

Он называется параметром уравнения состояния, потому что связывает давление тёмной энергии p с его плотностью энергии ρ, через w = p/ρ. Конечно, никто не измеряет давление тёмной энергии, поэтому определение довольно глупое – но это просто исторический случай. Имеет значение то, как тёмная энергия меняется со временем, но в ОТО это напрямую связано с параметром уравнения состояния.

Значит ли это, что давление тёмной энергии отрицательное?

Именно. Отрицательное давление означает, что субстанция тянет, а не толкает – как вытянутая пружина, тянущая внутрь с обоих концов. Часто это называют натяжением. Поэтому я предлагал термин «плавного натяжения» вместо «тёмной энергии», но опоздал.

Почему тёмная энергия заставляет Вселенную ускоряться?

Потому что она постоянная. Эйнштейн говорит, что энергия заставляет пространство-время искривляться. В случае Вселенной, это искривление проявляется в виде искривления пространства (а не пространства-времени) и расширения Вселенной. Мы измерили кривизну пространства, и она по сути нулевая. Поэтому постоянная энергия приводит к постоянной скорости расширения. В частности, параметр Хаббла близок к константе, и если вспомнить закон Хаббла, v = H*d, вы поймёте, что если H – практически постоянная, то v будет увеличиваться из-за увеличения расстояний. Вот вам и ускорение.

Если отрицательное давление подобно натяжению, почему она не стягивает всё вместе, а расталкивает в стороны?

Иногда можно услышать выражения типа «тёмная энергия ускоряет Вселенной из-за отрицательного давления». Строго говоря, так и есть, но всё немного наоборот: такое выражение даёт лишь иллюзию понимания. Вам говорят, что «сила гравитации зависит от плотности и утроенного давления, поэтому если давление равно и противоположно плотности, гравитация будет отталкивать». Звучит разумно, но никто не объяснит вам, почему гравитация зависит от плотности и тройного давления. И вообще, от этого зависит не сила гравитации, а локальное расширение пространства.

Вопрос «почему натяжение не стягивает вещи вместе?» правомерен. Ответ состоит в том, что тёмная энергия ни на что не давит и ничего не тянет. Она не взаимодействует с обычной материей, а также равномерно распределена в пространстве, поэтому любое натяжение, которое она оказывала бы в одном направлении, компенсировалось бы ровно таким же в противоположном. Вселенную ускоряет непрямой эффект тёмной энергии, работающий через гравитацию.

На самом деле тёмная энергия заставляет Вселенную ускоряться, потому что она постоянная.

Похожа ли тёмная энергия на антигравитацию?

Нет. Тёмная энергия это не антигравитация, а просто гравитация. Представьте мир с нулевой тёмной энергией, за исключением двух пузырей тёмной энергии. Эти два пузыря не отталкиваются, они притягиваются. Но внутри пузырей тёмная энергия расталкивает пространство, и оно расширяется. Такие вот чудеса неэвклидовой геометрии.

Это новая отталкивающая сила?

Нет. Это просто новы тип источника старой силы – гравитации. Никаких новых сил.

В чём разница между тёмной энергией и тёмной материей?

Это абсолютно разные вещи. Тёмная материя – это некая, пока не открытая нами, частица. Мы знаем о её существовании, потому что видим, как она влияет при помощи гравитации на различные объекты (галактики, скопление, крупномасштабные структуры, реликтовое излучение). Она составляет 23% от Вселенной. Но по сути, это старая добрая материя, просто такая, которую мы (пока) не можем зафиксировать. Она скапливается под воздействием гравитации и рассеивается при расширении Вселенной. Тёмная энергия, с другой стороны, не скапливается и не рассеивается. Она не сделана из частиц, это нечто совсем другое.

А может, нет никакой тёмной энергии, просто нужно слегка подправить гравитацию на космологических масштабах?

Это возможно. Существует не менее двух популярных подходов к этой идее: гравитация f®, которую помогали разрабатывать Марк Филипс и я, и гравитация DGP – Двали, Габададзе и Порати. Первый подход – феноменологический, в нём просто меняется уравнение поля Эйнштейна через исправление действия в четырёх измерениях, а второй использует дополнительные измерения, которые можно зафиксировать только на больших расстояниях. У обеих есть проблемы – не обязательно непреодолимые, но серьёзные – с новыми степенями свободы и сопутствующей этому нестабильностью.

Модифицированная гравитация достойна серьёзного рассмотрения. Но, как и в случае с квинтэссенцией, она порождает больше проблем, чем решает, по крайней мере, пока. Я предпочитаю следующие прогнозы шансов на успех: космологическая константа: 0,9, динамическая тёмная энергия = 0,09, модифицированная гравитация = 0,01.

Что тёмная энергия говорит о будущем Вселенной?

Зависит от того, что такое тёмная энергия. Если это вечная космологическая постоянная, то Вселенная продолжит расширяться, охлаждаться и опустошаться. В результате не останется ничего, кроме пустого пространства.

Космологическая постоянная может быть постоянной временно; то есть, в будущем может произойти фазовый переход, после которого энергия вакуума уменьшится. Тогда Вселенная, возможно, реколлапсирует.

Что же дальше?

Мы хотели бы разобраться с тёмной энергией (или модифицированной гравитацией) путём улучшенных космологических наблюдений. Это означает измерения параметра уравнения состояния, а также улучшение наблюдений за гравитацией в галактиках и кластерах для сравнения различных моделей. К счастью, в то время как в США отказываются от амбициозных научных проектов, Европейское космическое агентство разрабатывает спутник для измерения тёмной энергии. Разрабатываются и наземные научные проекты, и большой обзорный телескоп (Large Synoptic Survey Telescope) должен дать нам очень много после его запуска.

Но ответ может оказаться скучным – тёмная энергия будет простой космологической константой. Это просто одно число, и что с ним можно сделать? В этом случае нам, очевидно, потребуются улучшенные теории, а также вклад из смежных эмпирических источников данных – ускорителей частиц, поисков пятой силы, проверок гравитации – отовсюду, где можно получить информацию о том, как пространство-время и квантовая теория поля сочетаются на базовом уровне.

Что в науке здорово – в конце книжки нет правильных ответов, до всего необходимо докапываться самостоятельно. И тёмная энергия – одна из крупнейших задач.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *