Что такое энергия гиббса
Энтропия. Энергия Гиббса
Понятие энтропии
Абсолютная энтропия веществ и изменение энтропии в процессах
Стандартная энтропия
Стандартная энтропия образования
Энергия Гиббса
Стандартная энергия Гиббса образования
Энтальпийный, энтропийный фактор и направление процесса
Примеры решения задач
Задачи для самостоятельного решения
Понятие энтропии
Энтропия S – функция состояния системы. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).
Абсолютная энтропия веществ и изменение энтропии в процессах
При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.
Изменение энтропии в процессе выражается уравнением:
где S(прод.) и S(исх.) – соответственно абсолютные энтропии продуктов реакции и исходных веществ.
На качественном уровне знак S реакции можно оценить по изменению объема системы ΔV в результате процесса. Знак ΔV определяется по изменению количества вещества газообразных реагентов Δnг. Так, для реакции
(Δnг = 1) ΔV > 0, значит, ΔS > 0.
Стандартная энтропия
Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25 о С). Энтропия в этом случае обозначается S о 298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (S о ) увеличивается при повышении температуры.
Стандартная энтропия образования
Стандартная энтропия образования ΔS о f,298 (или ΔS о обр,298) – это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.
Энергия Гиббса
Энергия Гиббса G – функция состояния системы. Энергия Гиббса равна:
Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение δG в результате протекания процесса.
Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса (ΔG
Стандартная энергия Гиббса образования
Стандартная энергия Гиббса образования δG о f,298 (или δG о обр,298) – это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.
Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, δG о f,298 = 0.
Энтальпийный, энтропийный фактор и направление процесса
Проанализируем уравнение ΔG о Т = ΔН о Т — ΔТS о Т. При низких температурах ТΔS о Т мало. Поэтому знак ΔG о Т определяется в основном значением ΔН о Т (энтальпийный фактор). При высоких температурах ТΔS о Т – большая величина, знак Δ G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (ΔН о Т) и энтропийного (ТΔS о Т) факторов существует четыре варианта процессов.
Примеры решения задач
Задача 1. Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:
Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:
Вещество | NH3(г) | O2(г) | NО(г) | H2O(ж) |
S о 298, Дж/(моль·К) | 192,66 | 205,04 | 210,64 | 69,95 |
В данной реакции ΔV o х.р.,298
Задача 2. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH4NO3(к). Отличается ли стандартная энтропия образования NH4NO3(к) от стандартной энтропии этого соединения?
Решение. Стандартной энтропии образования NH4NO3 отвечает изменение энтропии в процессе:
Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:
Вещество | N2(г) | H2(г) | O2(г) | NH4NO3(к) |
S о 298, Дж/(моль·К) | 191,50 | 130,52 | 205,04 | 151,04 |
Стандартная энтропия образования NH4NO3(к), равная — 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония S о 298(NH4NO3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ S о 298 всегда больше нуля, в то время как величины ΔS 0 f,298, как правило, знакопеременны.
Задача 3. Изменение энергии Гиббса реакции:
равно δG о 298= –474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.
Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции ΔS о о 298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку ТΔS о
Задача 4. Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:
Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.
Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:
ΔG о х.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.
Поскольку ΔS о х.р.,298 > 0, то при температуре Т>ΔН о /ΔS о величина ΔG о х.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.
Задача 5. Пользуясь справочными данными по ΔG о f,298 и S о 298, определите ΔH о 298 реакции:
Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:
Вещество | N2O(г) | H2(г) | N2H4(г) | H2O(ж) |
ΔG о f,298, кДж/моль | 104,12 | 0 | 159,10 | -237,23 |
S о 298, Дж/(моль·К) | 219,83 | 130,52 | 238,50 | 69,95 |
ΔG о 298 = ΔН о 298 – ТΔS о 298. Подставляя в это уравнение величины ΔН о 298 и ТΔS о 298, получаем:
ΔН о 298 = –182,25× 10 3 + 298·(–302,94) = –272526,12 Дж = – 272,53 кДж.
Следует подчеркнуть, что поскольку ΔS о 298 выражена в Дж/(моль× К), то при проведении расчетов ΔG 0 298 необходимо также выразить в Дж или величину ΔS 0 298 представить в кДж/(мольK).
Задачи для самостоятельного решения
1. Используя справочные данные, определите стандартную энтропию образования ΔS о f,298 NaHCO3(к).
2. Выберите процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO2(г):
Энергия Гиббса. Энергия Гельмгольца. Направление процесса.
Чтобы дать ответ на вопрос о возможности протекания той или иной реакции, о ее направлении и глубине необходимо снова воспользоваться II – законом термодинамики, который может быть сформулирован следующим образом: любой самопроизвольно протекающий процесс, а также и химическая реакция, идет в том направлении, которое сопровождается уменьшением свободной энергии в системе (при постоянных температуре и давлении) или энергии Гельмгольца (при постоянных температуре и объеме).
Свободная энергия или Энергия Гиббса G – это та часть всей энергии системы, которую можно использовать для совершения максимальной работы.
Энергия Гельмгольца A — это та часть внутренней энергии системы, также определяющая работоспособность и может быть применена для совершения максимальной работы.
При протекании химических реакций единовременно совершаются два направления: стремление простых частиц объединиться в более сложные, а также стремление сложных частиц к распаду на более простые.
Они не зависят друг от друга и их величины противоположны, и процесс идет в сторону той реакции, при которой изменение величины больше. Разность между этими величинами определяет свободную энергию реакции (при постоянных температуре и давлении). Ее изменение в реакции определяется разностью сумм энергий Гиббса конечных продуктов реакции и исходных веществ:
При постоянных температуре и давлении изменение энергии Гиббса связано с энтальпией и энтропией следующим выражением:
Здесь изменение энергии Гиббса учитывает одновременно изменение энергетического запаса системы и степень ее беспорядка (самопроизвольность протекания процесса).
Т.к. энергия Гиббса является мерой самопроизвольности протекания процесса, то между знаком ΔG для любой реакции и ее самопроизвольным протеканием (при постоянных температуре и давлении) существуют такие зависимости:
Энтальпийный и энтропийный факторы и направление процесса
Выясним, как функция свободной энергии зависит от изменений энтропии и энтальпии идущего процесса. Вернемся к выражению, связывающему энергию Гиббса с энтальпией и энтропией:
Без энтропийных факторов все экзотермические реакции (ΔH˂0) должны были быть самопроизвольными. Но энтропийный фактор, который определяется величиной – TΔS, может привести к росту или, наоборот, к падению способности самопроизвольного протекания.
Так, при ΔS>0, член – TΔS вносит отрицательный вклад в общую величину ΔG, следовательно он повышает возможность реакции протекать самопроизвольно.
А при при ΔS 0 Величина ΔG 0 р-ции позволяет определить, будет ли данная реакция, находящаяся в стандартных условиях, протекать самопроизвольно в прямом или обратном направлении. Аналогично теплоте образования, энергии Гиббса образования простых веществ равны нулю. Энергия Гельмгольца системы с определенной внутренней энергией (U), энтропией (S) при абсолютной температуре (Т) определяется уравнением: Изменение энергии Гельмгольца для процессов (при постоянных температуре и объеме) можно определить соотношением: ΔA — величина, которая не зависит от пути, а зависит только от исходного и конечного состояния системы, т.е. ΔA также, как и другие рассмотренные термодинамические величины, является функцией состояния. Энергия Гельмгольца подобно энергии Гиббса связана с самопроизвольностью протекания процесса. Если допустить, что система изолирована, а объем и температура постоянны, то самопроизвольно будут протекать только те процессы, при которых А уменьшается. Таким образом, при ΔA 0 – в обратном направлении, а при ΔA=0 система находится в состоянии равновесия. Энергию Гельмгольца и энергию Гиббса в стандартных состояниях можно связать с константой равновесия: Где R– универсальная газовая постоянная, K – константа равновесия, Т – абсолютная температура. Если K>>1, т.е. реакция идет в прямом направлении, то ΔG 0 ˂˂0. Если K 0 >>0 Если K=1, то ΔG 0 =0 В случае химической реакции, протекающей в гальваническом элементе при стандартных условиях ΔG 0 можно связать с ЭДС гальванического элемента следующим соотношением: nF – количество прошедшего электричества E 0 – электродвижущая сила, при условии что все вещества, принимающие участие в реакции, находятся в стандартном состоянии. При самопроизвольном протекании процесса, его ΔG 0. Порог реакционной способности веществ для большинства реакций имеет значение ΔG 0 ≈41 кДж/моль. То есть, если ΔG 0 0 >+41 кДж/моль, то процесс неосуществим в любых реальных и стандартных условиях. Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.) Понятие энергии Гиббса широко используется в термодинамике и химии. Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста её энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж). 1 Основные понятия энергии Гиббса Классическим определением энергии Гиббса является выражение: где U – внутренняя энергия, P – давление, V – объем, T – абсолютная температура, S – энтропия. Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных — через давление p и температуру T: Для системы с переменным числом частиц этот дифференциал записывается так: Здесь – химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему еще одну частицу. Правило фаз Гиббса в термодинамике: число равновесно сосуществующих в какой-либо системе фаз не может быть больше числа образующих этих фаз. Эенергия Гиббса: (изобарно-изотермический потенциал, свободная энтальпия), один из потенциалов термодинамических системы. Обозначается G, определяется разностью между энтальпией H и произведением энтропии S на термодинамическую температуру Т: G = H — T·S. Изотермический равновесный процесс без затраты внешних сил может протекать самопроизвольно только в направлении убывания энергии Гиббса до достижения ее минимума, которому отвечает термодинамическое равновесное состояние системы. Названа по имени Дж. У. Гиббса. Распределение Гиббса: каноническое, распределение вероятностей различных состояний макроскопической системы с постоянным объемом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со средой, то распределение Гиббса называется большим каноническим. Для изолированной системы справедливо Гиббса распределение микроканоническое, согласно которому все микросостояния системы с данной энергией равновероятны. Названо по имени открывшего это распределение Дж. У. Гиббса. 2 Значение энергии Гиббса Самопроизвольность протекания процессов в системах открытого и закрытого типов описывается через специальный критерий, получивший название энергии Гиббса. Он является функцией состояния. Д.У. Гиббс, работая с термодинамическими системами, сумел вывести ее через энтропию и энтальпию. Энергия Гиббса, в частности, позволяет предсказывать направленность протекания самопроизвольных биологических процессов и оценивать их теоретически достижимый КПД. Если применить выводы Гиббса ко второму термодинамическому закону, то формулировка будет следующей: при постоянных (const) давлении и температуре без внешнего воздействия система может поддерживать самопроизвольное протекание лишь таких процессов, следствием которых является уменьшение уровня энергии Гиббса до значения, которое наступает при достижении ею установившегося минимума. Равновесие любой термодинамической системы означает неизменность указанной энергии (минимум). Поэтому энергия Гиббса представляет собой потенциал (свободную энтальпию) в изобарно-изотермических системах. Поясним, почему указан именно минимум. Дело в том, что это одно из важнейших постулатов равновесия в термодинамике: данное состояние при неизменности температуры и давления означает, что для очередного изменения необходимо увеличить уровень энергии, а такое возможно лишь при смене каких-либо внешних факторов. Буквенное обозначение – G. Численно равна разности между известной энтальпией и значением произведения температуры на энтропию. То есть энергия Гиббса может быть выражена через следующую формулу: где S – энтропия системы, t – температура термодинамическая, H – энтальпия. Энтропия системы в данную формулу включена для того, чтобы учитывать тот факт, что высокая температура приводит к уменьшению упорядоченного состояния системы (беспорядок), а низкая же – наоборот. Так как и Гиббсова энергия, и энтальпия – одни из функций системы в термодинамике, то посредством изменения G или H можно охарактеризовать протекающие химические превращения. Если приводится уравнение реакции и изменение энергии Гиббса, то его относят к классу термохимических. Применительно к этой энергии может быть сформулировано Правило Гесса: если давление и температура неизменны, то создание новых веществ из первоначальных (базовых реагентов) приводит к тому, что энергия в системе изменяется, при этом вид происходящих реакций и их количество на результат никак не влияют. Так как энергия, о которой говорится в представленном докладе, является изменчивой величиной, то для выполнения расчетов было введено понятие «стандартная энергия Гиббса». Эта величина присутствует в любом химическом справочнике, численно равна 298 кДж/моль (обратите внимание, что размерность точно такая же, как для любой другой молярной энергии). Это значение позволяет рассчитать изменение практически для любого химического процесса. Если в процессе протекания химической реакции на систему оказывается внешнее воздействие (совершается работа), то значение энергии Гиббса увеличивается. Такие реакции относят к эндергоническим. Соответственно, если сама система совершает работу, затрачивая энергию, то речь идет о экзергонических проявлениях. Понятие Гиббсовой энергии нашло широчайшее применение в современной химии. К примеру, синтез полимеров основан на реакциях присоединения. При их проведении несколько частиц объединяются в одну, при этом значение энтропии уменьшается. Основываясь на формуле Гиббса, можно утверждать, что внешнее воздействие (например, высокотемпературное) может обратить подобную экзотермическую реакцию присоединения, что и подтверждается на практике [2]. 3 Методы измерения энергии Гиббса Существует значительное число способов расчета изобарно- изотермического потенциала. Это объясняется тем, что для расчета Δσot необходимо в соответствии с уравнением (1.6) знать ΔН оt и ΔS оt. Если учесть, что эти величины в свою очередь связаны с температурой уравнением теплоемкости (Ср = f(Т)), то становится понятным, что вычисление Δσot является довольно сложной задачей и требует знания этих величин для каждого компонента, входящего в уравнение реакции. Следует отметить, что для большинства веществ величины Δσot, ΔSot, ΔНot, а также коэффициенты уравнения Ср = а + bТ + с/Т2 обобщены и приведены в таблицах различных справочников [1]. Поскольку в данных справочниках все величины даны в калориях, расчеты выполнены с учетом этих величин. В связи с изложенным рассмотрим расчет Δσo t реакции окисления сернистого ангидрида в серный SО2 + 0.5О2 ↔ SО3 наиболее распространенным методом. В таблице1 приведены исходные термодинамические данные для всех компонентов реакции: Т а б л и ц а 1 – Термодинамические величины реакции окисления SO2 70,96 71,748 59,30 10,76 SO3 94,45 88,69 61,24 14,84 По значениям стандартных величин ΔНo 298 и So 298 Δσo298 = ΔНo298 – ТΔSo298 Изобарно-изотермический потенциал реакции Δσo298 = [–94.45 – (–70.96) – 0.298 (61.24 – 0.5 · 49.03 – 59.30] = –16.76 ккал, что хорошо согласуется с расчетом по закону Гесса: Δσo298 = –88.69 – (–71.748) = –16.94 ккал При наличии в справочниках величины средней теплоемкости ΔĈр в исследуемом температурном интервале Δσo 298 определяют Δσot = ΔНo298 + Δ Ĉр( Т – 298) – Т ΔSo298 – Т ĈрlnТ/298 (1) Это уравнение неприменимо для расчета Δσo Т в растворах, даже в узком температурном интервале. Пример 1. Определить Δσ600 для вышеприведенной реакции, если значения Ĉр600 для SО2 О2, SО3 составляют 10.76; 7.22; 18.84 кал/(моль*град). Для решения использовать значение ΔН0 298 и S0 298 из таблицы 1. Δσ600 = [–94.45 –(–70.96) ] +[(18.84 – 0.5 · 7.22 – 10.76) · (600 – 298)] – – 600 (61.24 – 0.5 · 49.03 – 59.30) – 600 · 4.47 ln400/298 = = –23.49 + 1.349 + 13.545 – 1.876 = –10.472 ккал/моль. Рассмотрим экзотермическую реакцию: СО + 2Н2=> СН3ОН — 93,5 кДж Действие энтальпийного фактора обусловливает ее протекание в прямом направлении. ∆H При постоянных давлении и температуре самопроизвольно протекают только такие химические реакции, которые сопровождаются уменьшением энергии Гиббса. Иными словами, ∆G 0, то процесс не может идти в данных условиях. Используя известные значения стандартных энтальпий образования и стандартных энтропии веществ, можно прогнозировать возможность протекания химической реакции при той или иной температуре. Под стандартной энергией Гиббса образования понимают изменение энергии Гиббса при реакции образования 1 моль данного соединения из простых веществ. Подобно энтальпии и энтропии: стандартное изменение энергии Гиббса в ходе химической реакции равно сумме стандартных энергий Гиббса образования продуктов реакции за вычетом суммы стандартных энергий Гиббса образования исходных веществ. Пользуясь табличными данными можно рассчитать изменение энергии Гиббса в стандартных условиях. Рассмотрим обратимую реакцию: Изменение энергии Гиббса: Итак, при стандартных условиях реакция протекает в прямом направлении, хотя она сопровождается уменьшением энтропии (превалирует энтальпийный фактор). Обратная реакция — разложение аммиака на водород и азот — в этих условиях термодинамически (принципиально) невозможна. Однако по мере повышения температуры все более существенным становится влияние энтропийного фактора. В случае обратной реакции ∆G имеют, естественно, противоположные знаки. Уже при 500К становится принципиально возможным разложение аммиака. При 800К эта возможность возрастает. Когда действия энтальпийного и энтропийного факторов уравновешивают друг друга, т.е. ∆G=0, наступает состояние химического равновесия. В этом случае скорость прямой реакции равна скорости обратной. Изменение энергии Гиббса определяет лишь возможность протекания химических реакций. В конкретных условиях скорость протекания реакции может быть бесконечно мала. Это обусловлено барьером энергии активации, при нагревании или освещении солнечным светом реакция немедленно произойдет.Всегда ˂0 Реакция самопроизвольна при любых температурах, обратная реакция всегда несамопроизвольна >0 ˂0 Всегда >0 Реакция несамопроизвольна при любых температурах, обратная реакция самопроизвольна ˂0 ˂0 При низких температурах ˂0, при высоких температурах >0 Реакция самопроизвольна при низких температурах, обратная реакция становится самопроизвольной при высоких температурах >0 >0 При низких температурах >0, при высоких температурах ˂0 Реакция несамопроизвольна при низких температурах, но при высоких температурах становится самопроизвольной ЭНЕРГИЯ ГИББСА: ОТКРЫТИЕ, ЗНАЧЕНИЕ, МЕТОДЫ ИЗМЕРЕНИЯ
Энергия Гиббса и ее изменение при химических процессах