Что такое эмиттерный повторитель
Эмиттерный повторитель
Эмиттерный повторитель— частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное — мало.
В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель, а также в качестве выходных каскадов усилителей мощности.
30. Параметрический стабилизатор повышенной мощности с эмиттерным повторителем (сравнительный анализ).
Помимо рассмотренной схемы применяют каскадное включение стабилитронов. Говоря проще, берут несколько вышерассмотренных схем и включают одну за другой. При этом напряжение стабилизации предыдущего стабилитрона должно быть больше, чем следующего. Такие схемы применяют для увеличения коэффициента стабилизации. Бывает еще и мостовая схема, называемая мостовой параметрический стабилизатор. Теоретически у такой схемы коэффициент стабилизации стремится к бесконечности (хотя в это верится с трудом).
К сожалению большой мощи с вышерассмотренной схемы не снять. Поэтому придумали ниже приведенную схемку, которая проста до безобразия.
Как видим, ничего сложного. Просто нагрузку воткнули через транзистор, включенный по схеме ОК, выполняющего роль усилителя мощности.
Типовые схемы параметрических стабилизаторов обеспечивают приемлемые параметры только при достаточно малых тока нагрузки (не более 0,5. 1⋅Iст max). Для питания более мощных цепей требуются дополнительные меры.
Может показаться, что проблема разрешима при параллельном включении нескольких однотипных стабилитронов на выходе стабилизатора. Однако делать это недопустимо, поскольку из-за разброса параметров стабилитроны будут работать в существенно различающихся режимах. В крайнем случае можно применить стабилитрон с большей мощностью. Если же таким образом повысить ток нагрузки до требуемого уровня не удается, то можно применить дополнительный транзистор, включенный по схеме эмиттерного повторителя (рис. 3.5-6).
Рис. 3.5-6. Параметрический стабилизатор с эмиттерным повторителем
В такой схеме максимально допустимый ток нагрузки повышается в h21э раз (h21э — статический коэффициент усиления тока базы транзистора). Значение резистора R1 (балластный резистор) должно подбираться в зависимости от конкретного тока нагрузки (Iн max=IVT1⋅h21э–Iст min⋅h21э). Резистор R2 обеспечивает нормальный режим работы транзистора при малых токах. Выходное напряжение стабилизатора равно: Uвых=Uст–Uб−э,где\(Uст — напряжение стабилизации применяемого стабилитрона, Uб−э — напряжение на эмиттерном переходе транзистора. Коэффициент стабилизации параметрического стабилизатора при включении эмиттерного повторителя не увеличивается.
Чтобы увеличить коэффициент стабилизации (в 5. 10 раз) необходимо обеспечить постоянство тока стабилитрона при изменениях входного напряжения стабилизатора. Для этого балластный резистор заменяют источником тока. На рис. 3.5-7 приведена схема стабилизатора с источником тока на биполярном транзисторе, а на рис. 3.5-8 схемы стабилизаторов с эмиттерным повторителем и источником тока на полевом транзисторе.
Рис. 3.5-7. Параметрический стабилизатор с источником тока ( Внимание! на картинке замечена ошибка: по питанию не минус, а плюс. И первый стабилитрон наоборот должен стоять )
Рис. 3.5-8. Параметрические стабилизаторы с эмиттерным повторителем и источником тока
Если в стабилизаторе, схема которого приведена на рис. 3.5-8а выбрать R1=0, то допустимый ток нагрузки достигнет максимального значения. Однако при этом несколько снижается коэффициент стабилизации. Его можно улучшить, если включить цепь обратной связи, обозначенную пунктиром. Эта цепь вместе с резистором R1 образует для переменной составляющей напряжения на транзисторе VT2 делитель, с выхода которого напряжение поступает в цепь управления этим транзистором таким образом, что ток базы транзистора изменяется в противофазе с напряжением пульсаций.
Применение источника тока для питания стабилитрона позволяет ограничить ток базы транзистора эмиттерного повторителя и, следовательно, ток коллектора этого транзистора при коротком замыкании в цепи нагрузки. Однако в стабилизаторах с большим значением выходного напряжения (особенно при применении германиевых транзисторов) возможен перегрев транзистора вследствие повышения рассеиваемой мощности и эффекта саморазогрева. В стабилизаторе по схеме рис. 3.5-8б действует ООС по току, поскольку ток нагрузки протекает через резистор R1. Поэтому ток короткого замыкания очень слабо зависит от температуры корпуса транзистора VT2 и лавинный саморазогрев не проявляется до температур порядка 50. 60 °C. Ток короткого замыкания устанавливается подбором резистора R1.
Биполярные транзисторы
Биполярный транзистор, определение и типы
Биполярный транзистор представляет собой трехвыводной полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два р-n перехода. В современной электронике биполярные транзисторы уже практически не используются как силовые ключевые элементы. Причиной этого является низкое быстродействие, в сравнении с MOSFET-транзисторами, сравнительно большее энерговыделение, большие мощности управления, сложности параллельного включения и т.д. Поэтому в данной работе биполярные транзисторы будут рассматриваться с целью использования в качестве функциональных элементов (систем обратной связи, усилительных каскадов и т.д.).
Биполярные транзисторы имеют два основных типа структуры:
Достаточно подробно про внутреннюю структуру транзисторов изложено в [Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. Лань. 2002. 479 с.]. Резюмируя можно сказать, что быстродействие n-p-n транзистора существенно больше быстродействия p-n-p структуры. По этой, а также еще по нескольким причинам n-p-n транзисторов по номенклатуре существенно больше, чем p-n-p транзисторов. Вот такая ассиметрия.
Области использования биполярных транзисторов:
Биполярный транзистор имеет два p-n перехода – эмиттерный и коллекторный. База у переходов общая. Биполярный транзистор управляется током.
Условное обозначение биполярных транзисторов n-p-n и p-n-p структур показано на рисунке BJT.1.
Рисунок BJT.1 – Условное обозначение n-p-n и p-n-p транзистора
Классификация биполярных транзисторов
Биполярные транзисторы условно подразделяются на различные типы в соответствии со следующими измерениями параметров:
Основные схемы включения биполярного транзистора
Мы не будем вдаваться в подробности внутренней кухни транзистора в сложные хитросплетения взаимодействия мужественных электронов и женственных дырок. Просто рассмотрим транзистор как маленький черный ящик с тремя ножками. Существует три основных способа включения трех ножек транзистора:
Схема с общим эмиттером
Схема с общим эмиттером – самая распространённая схема включения биполярного транзистора (рисунок BJT.3). Обеспечивает усиление сигнала, как по напряжению, так и по току. Обеспечивает максимальное усиление по мощности среди всех прочих схем включения биполярного транзистора. В данной схеме протекание тока по цепи база-эмиттер IB (часто просто называемый ток базы) приводит к протеканию тока в цепи коллектор-эмиттер IC (называемый обычно просто током коллектора). Коэффициент пропорциональности между током базы и током коллектора называется коэффициент усиления транзистора по току в схеме с общим эмиттером hFE:
Еще hFE часто обозначается как β или в советской литературе как h21э.
Важным преимуществом схемы является возможность использования только одного источника питания. Кроме этого, при проектировании схем важно учитывать то, что выходное напряжение инвертируется относительно входного.
Схема с общей базой
Значительно менее распространённое включение биполярного транзистора (рисунок BJT.4).
Обеспечивает усиление сигнала, но только по напряжению. Ток практически не изменяется или немного уменьшается. Ток в цепи коллектора связан с током эмиттера IE коэффициентом передачи ток α близким к единице, но меньшим её:
Коэффициент передачи тока рассчитывается исходя из соотношения:
1
где hFE – все тот же коэффициент усиления транзистора по току в схеме с общим эмиттером.
Фактически силовой ток течет по цепи коллектор-эмиттер, то есть ток нагрузки полностью втекает в управляющий источник E. Это определяет малое входное сопротивление схемы Rin, фактически равное дифференциального сопротивления эмиттерного перехода
VBE – напряжение база-эмиттер
Соответственно ток базы мал и равен:
Эмиттерный повторитель
Эмиттерный повторитель потому и называется повторителем, что он не усиливает входной сигнал по напряжению, а «повторяет» его. Или почти повторяет. В схеме сопротивление нагрузки включено так, что напряжение не нем вычитается из приложенного напряжения, чем реализуется отрицательная обратная связь. Схема включения биполярного транзистора в режиме эмиттерного повторителя представлена на рисунке BJT.5.
Усиление достигается только по току:
Соответственно входное сопротивление повторителя равно:
Rload – сопротивление нагрузки.
В реальности выходное напряжение отстает от входного на величину падения напряжения на переходе «база-эмиттер» (приблизительно равное 0,6 В):
Вольт-амперная характеристика биполярного транзистора
Рисунок BJT.6. Форма вольт-амперных характеристик биполярного транзистора, включенного по схеме с общим эмиттером: а) входные характеристики; б) выходные характеристики
Основные параметры биполярного транзистора
Комплементарность транзисторов
В ряде типовых схемотехнических решений необходимо одновременное использование транзисторов n-p-n и p-n-p структуры имеющих практически идентичные параметры. Такие транзисторы называют комплементарными. Ниже приведена таблица наиболее широко используемых пар комплементарных транзисторов.
Поиск пар комплементарных транзисторов можно осуществлять на ресурсе [http://www.semicon-data.com/transistor/tc/2n/tc_2n_208.html].
Измерение коэффициента усиления по току
Транзисторы в пределах каждого конкретного типа имеют значительный разброс по коэффициенту усиления тока. В случае необходимости точного измерения коэффициента усиления по току использую тестеры с опцией измерения hFE.
Составной транзистор
Для увеличения коэффициента усиления используется схема включения двух и более биполярных транзисторов. Существует две разновидности схем составных транзисторов: схема Дарлингтона и схема Шиклаи (рисунок BJT.7). Каждая из представленных схем включает управляющий транзистор и силовой, через который протекает основная доля тока нагрузки.
В схемы может быть введен дополнительный резистор для изменения рабочих характеристик составного транзистора и улучшения динамических свойств схемы.
Функционально в схеме Дарлингтона резистор обеспечивает протекание постоянного тока через эмиттер управляющего транзистора, поскольку напряжение база-эмиттер силового транзистора слабо зависит от тока базы.
Ниже представлены расчеты коэффициента передачи тока составного транзистора для схем Дарлингтона и Шиклаи.
Расчет схемы Дарлингтона
Выведем выражение для расчета:
Сопротивление резистора следует из выражения:
Ток эмиттера первого транзистора:
Проводим ряд преобразований:
R – сопротивление резистора;
IC2 – ток коллектора второго транзистора (выходной ток составного транзистора);
IB1 – ток базы первого транзистора (входной ток составного транзистора).
Полученное соотношение определяет коэффициент передачи тока составного силового транзистора Дарлингтона. При больших значениях сопротивления R (или при его отсутствии в схеме) выражение упрощается:
Из выражения видно, что в коэффициент передачи тока составного транзистора фактически равен произведению коэффициентов передачи тока дискретных транзисторов его составляющих.
Расчет схемы Шиклаи
Выведем выражение для расчета:
Сопротивление резистора следует из выражения:
Ток коллектора первого транзистора:
R – сопротивление резистора;
IC2 – ток коллектора второго транзистора (выходной ток составного транзистора);
IB1 – ток базы первого транзистора (входной ток составного транзистора).
Полученное соотношение определяет коэффициент передачи тока составного силового транзистора Шиклаи. При больших значениях сопротивления R (или при его отсутствии в схеме) выражение упрощается:
Из выражения видно, что в коэффициент передачи тока составного транзистора равен произведению коэффициентов передачи тока дискретных транзисторов его составляющих.
Функционально в схеме Шиклаи резистор обеспечивает протекание постоянного тока через коллектор управляющего транзистора, поскольку напряжение база-эмиттер силового p-n-p транзистора слабо зависит от тока базы.