Что такое электрическая цепь определение
Электрическая цепь
Электри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.
Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).
Содержание
Классификация электрических цепей
Неразветвленные и разветвленные электрические цепи
Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом
Линейные и нелинейные электрические цепи
Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.
В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.
Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.
Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть прменён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).
Электрическая цепь и ее элементы
Электрическая цепь – это соединение различных электрических или электронных деталей в одно. Для объединения используются проводники, которые пропускают через себя ток. Сами элементы могут самыми разнообразными – линейными, нелинейными, пассивными или активными. Любая электрическая цепь имеет в себе питание, включатель, провода, потребители тока. Она также должна быть замкнутой, иначе ток не сможет по ней протекать. Не являются электрической цепью заземляющие и зануляющие контуры.
В статье будет описано строение как сложных, так и простейших электрических цепей, как их грамотно создать, а главное обеспечить ее безопасность. В качестве дополнения, статья имеет в себе несколько видеороликов и интересный научный материал по теме.
Основы электрических цепей
Как вода течет по водопроводу (по трубам, через краны, фильтры, счетчики и т.д.), так же электричество течет по цепи (проводам, электрическим и электронным компонентам, через штекера и гнезда и т.д.). Электричество является одной из нескольких видов энергии, которая при своем течении может высвобождать свет, тепло, звук, радиоволны, механические движения, электромагнитные поля и т.д. Взять любую электротехнику (компьютер, мобильный телефон, электропечь, телевизор и т.д.), вся она содержит в себе электрические схемы, состоящие из различных электрических цепей, по которым течет ток, и на которых присутствует напряжение определенной величины и полярности.
Давайте более подробно разберем, что же собой представляет электрическая цепь, как именно по ней бежит ток. Итак, электрический ток — это упорядоченное движение электрических заряженных частиц. Напомню, что в твердых телах носителями электрического заряда являются электроны (частицы имеющие отрицательный заряд, он же минус). В жидкостях и газах носителями электрического заряда являются ионы (атомы и молекулы, у которых имеется недостаток электронов на своих орбитах, и имеющие положительный заряд, он же плюс). Чаще всего приходится иметь дело именно с движением электронов по электрической цепи именно в твердотельных проводниках (это металлы, кристаллы).
Электрическая цепь это некий замкнутый путь, по которому течет ток, бегут электрически заряженные частицы. Само перемещение этих частиц можно представить следующим образом. Как вам должно быть известно из уроков по физике все вещества состоят из атомов и молекул (мельчайшая частица самого вещества, его структурная составляющая). В твердых состояниях вещества атомы выстроены в определенном порядке, имеют так называемую кристаллическую решетку. У некоторых веществ электроны, что наиболее удалены от центра атома, могут легко отрываться от своего атома и переходить к соседнему. Так получается движение заряженных частиц внутри самого вещества.
Такие вещества являются проводниками электрического тока. Одни это делают хорошо, другие хуже (проводят ток). Если же взять такое вещество как медь (металл), который достаточно хорошо проводит через себя электричество и сделать из нее проволоку, то в итоге мы получим проводник электрического тока определенной длины.
Чтобы пошел ток нужен как бы мостик, соединяющий эти самые противоположные полюса. В роли этого моста, для перехода электрического заряда с одного полюса на другой, и будет выступать замкнутая электрическая цепь, состоящая из различных проводников.
Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.
К примеру, мы просто обычной медной проволокой соединим полюса источника питания. В итоге через проволоку потечет ток (тот самый переизбыток электрических зарядов). Это будет, пожалуй, самой простой электрической цепью, которая может только создавать короткое замыкание этого самого источника питания. Но все же это электрическая цепь. Более полезной электроцепью будет такая схема — источник питания (обычная батарейка), провода, переключатель и лампочка (рассчитанная на напряжение источника питания). Когда мы все это соединим друг за другом (последовательно) мы уже получим электрическую цепь, где течение тока будет приносить пользу в виде излучения света электрической лампочкой.
Естественно, подобными простыми электрическими цепями электротехника не ограничивается. Если правильно подключать различные электрические и электронные компоненты между собой, подсоединяя к ним источник питания, создавая различные функциональные схемы, можно в итоге получать все то разнообразие электроустройств, которое мы сейчас имеем. И все они имеют различные по сложности электрические цепи.
Электроцепи и их элементы
Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону. Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы.
Что такое электрическая цепь определение
Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!
Электрические цепи
Электрическая цепь – это совокупность устройств, по которым течет электрический ток.
Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:
Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.
Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.
Электрическая цепь
По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.
Сейчас переменный ток используется повсеместно.
Элементы электрических цепей
Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.
Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.
Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.
Существуют условные обозначения для изображения элементов цепи на схемах.
Нажмите на изображение чтобы увеличить
Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.
Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.
Нажмите на изображение чтобы увеличить
При решении задач и анализе схем используют следующие понятия:
Чтобы понять, что есть что, взглянем на рисунок:
Нажмите на изображение чтобы увеличить
Классификация электрических цепей
По назначению электрические цепи бывают:
Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.
Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.
Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.
Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.
Расчет электрических цепей
Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.
Нажмите на изображение чтобы увеличить
Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:
Нажмите на изображение чтобы увеличить
Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов
Нажмите на изображение чтобы увеличить
Последовательное соединение элементов цепи
В этом случае все элементы подключаются к цепи друг за другом. Последовательное соединение не дает возможности получить разветвленную цепь — она будет неразветвленной. На рис. 1 показан пример последовательного соединения элементов в цепи.
В нашем примере взяты два резистора. Резисторы 1 и 2 имеют сопротивления R1 и R2. Поскольку электрический заряд в этом случае не накапливается (постоянный ток), то при любом сечении проводника за определенный интервал времени проходит один и тот же заряд. Из этого вытекает, что сила тока в обоих резисторах равная:
А вот напряжение на их концах суммируется:
Согласно закону Ома, для всего участка цепи и для каждого резистора в отдельности полное сопротивление цепи будет:
В случае последовательного соединения проводников напряжения и сопротивления можно выразить соотношением:
Параллельное соединение проводников
Когда два проводника соединяются параллельно, электрическая цепь имеет два разветвления. Точки разветвления проводников называют узлами. В них электрический заряд не накапливается, т. е. электрический заряд, поступающий за определенный промежуток времени в узел, равен заряду, уходящему из узла за то же время. Из этого следует, что:
где I — сила тока в неразветвленной цепи.
При параллельном соединении проводников напряжение на них будет одно и то же. Обозначим сопротивления параллельно соединенных двух проводников R1 и R2. Используя закон Ома для участков электрической цепи с данными сопротивлениями, можно выявить, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников, т. е.:
Данная формула справедлива только для определения общего сопротивления двух проводников, соединенных параллельно. Величину, обратную сопротивлению, называют проводимостью. При параллельном соединении проводников их сопротивления и сила тока связаны соотношением:
Соединения конденсаторов
У конденсаторов существует также два вида соединения: последовательное и параллельное.
Последовательное соединение. В этом случае обкладка одного конденсатора, заряженная отрицательно, соединена с обкладкой другого конденсатора, заряженного положительно. На рис. 3 показан пример последовательного соединения конденсаторов.
При данном типе соединения действует следующее правило: величина, обратная емкости батареи конденсаторов при последовательном соединении, равна сумме величин, обратных емкостям отдельных конденсаторов. Из этого следует:
При этом типе соединения емкость батареи конденсаторов меньше емкости любого из конденсаторов.
Параллельное соединение. При параллельном соединении конденсаторов положительно заряженные обкладки соединены с положительно заряженными, а отрицательно заряженные — с отрицательными (рис. 4).
В этом случае емкость батареи конденсаторов будет равна сумме электрических емкостей конденсаторов:
Соединения источников тока
При параллельном способе соединения источников тока соединяют между собой все положительные и все отрицательные полюсы. Напряжение на разомкнутой батарее будет равно напряжению на каждом отдельном источнике, т. е. при параллельном способе соединения ЭДС батареи равна ЭДС одного источника. Сопротивление батареи при параллельном включении источников будет меньше сопротивления одного элемента, потому что в этом случае их проводимости суммируются.
При последовательном соединении источников тока два соседних источника соединяются между собой противоположными полюсами. Разность потенциалов между положительным полюсом последнего источника и отрицательным полюсом первого будет равна сумме разностей потенциалов между полюсами каждого источника.
Из этого вытекает, что при последовательном соединении ЭДС батареи равна сумме ЭДС источников, включенных в батарею. Общее сопротивление батареи при последовательном включении источников равняется сумме внутренних сопротивлений отдельных элементов.
Расчет электрических цепей
Основой расчета электрических цепей является определение силы токов в отдельных участках при заданном напряжении и заранее известном сопротивлении отдельных проводников. Допустим, общее напряжение на концах цепи нам известно. Известны также сопротивления R1, R2 … R6 подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (сопротивление амперметра в расчет не принимается). Следует вычислить силу токов I1, I2, … I6.
В первую очередь, нужно уточнить, сколько последовательных участков имеет данная цепь. Исходя из предложенной схемы, видно, что таких участков три, причем второй и третий содержат разветвления. Допустим, что сопротивления этих участков R1, R’, R”. А значит, все сопротивление цепи можно выразить как сумму сопротивлений участков:
где R’ — общее сопротивление параллельно соединенных резисторов R2, R3 и R4, a R” — общее сопротивление параллельно соединенных резисторов R5 и R6. Применяя закон параллельного соединения, можно вычислить сопротивления R’ и R”:
1/R’ = 1/R2 + 1/R3 + 1/R4 и 1/R” = 1/R5 + 1/R6
Для того чтобы определить силу тока в неразветвленной цепи с помощью закона Ома, нужно знать общее сопротивление цепи при заданном напряжении. Для этого следует воспользоваться формулой:
Из всего вышеизложенного можно вывести, что I = I1.
Но для определения силы тока в отдельных ветвях следует сначала вычислить напряжение на отдельных участках последовательных цепей. Опять же с помощью закона Ома можно записать:
U1 = IR1; U2 = IR’; U3 = IR”
Теперь, зная напряжение на отдельных участках, можно определить силу тока в отдельных ветвях:
I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6
Бывают случаи, когда нужно вычислить сопротивления отдельных участков цепи по уже известным напряжениям, силе токов и сопротивлении других участков, а также определить нужное напряжение по заданным сопротивлениям и силе токов. Метод расчета электрических цепей всегда одинаков и основан на законе Ома.
Электрические цепи для чайников: определения, элементы, обозначения
Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!
Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.
Электрические цепи
Электрическая цепь – это совокупность устройств, по которым течет электрический ток.
Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:
Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.
Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.
Электрическая цепь
Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.
По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.
Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.
Элементы электрических цепей
Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.
Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.
Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.
Существуют условные обозначения для изображения элементов цепи на схемах.
Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.
Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.
Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.
При решении задач и анализе схем используют следующие понятия:
Чтобы понять, что есть что, взглянем на рисунок:
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Классификация электрических цепей
По назначению электрические цепи бывают:
Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.
Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.
Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.
Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.
Расчет электрических цепей
Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.
Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:
Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов
Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!