Что такое электрическая прочность диэлектриков
Электрическая прочность
Электрическая прочность — характеристика диэлектрика, минимальная напряжённость электрического поля, при которой наступает электрический пробой. Все газы, а также все твёрдые и жидкие диэлектрики обладают конечной электрической прочностью.
Когда напряжённость электрического поля превышает электрическую прочность, диэлектрик начинает проводить электрический ток. Проводимость вызывается комбинацией ударной ионизации и туннельного просачивания; роль каждого из этих эффектов зависит от конкретного диэлектрика.
Изменение электропроводности происходит скачкообразно и часто приводит к разрушению диэлектрика вследствие перегрева.
Прочность различных материалов
Электрическая прочность измеряется в вольтах на единицу расстояния (обычно В/см) и сильно варьирует с диэлектриком:
Измерения
Электрическая прочность измеряется с помощью коротких импульсов (чтобы результаты измерений не искажались тепловым пробоем).
Литература
Полезное
Смотреть что такое «Электрическая прочность» в других словарях:
электрическая прочность — электрическая прочность; отрасл. пробивная прочность; электрическая крепость; пробивная напряженность электрического поля Напряженность электрического поля при пробое или неполном пробое диэлектрика … Политехнический терминологический толковый словарь
ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ — (2) … Большая политехническая энциклопедия
ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ — минимальная напряженность однородного электрического поля, при которой наступает пробой диэлектриков … Большой Энциклопедический словарь
ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ — напряжённость электрич. однородного поля Епр, при к рой наступает электрический пробой в ва. У слюды, кварца и др. «хороших» диэлектриков Ёпр=106 107 В/см; в очищенных и обезгаженных жидких диэлектриках Eпр=106В/см; в газах Э. п. зависит от… … Физическая энциклопедия
электрическая прочность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN voltage proof … Справочник технического переводчика
Электрическая прочность — 7.2 Электрическая прочность Сразу после испытания сопротивления изоляции токоведущие и доступные части должны выдержать испытание напряжением постоянного тока в течение 1 мин: а) резьбовые цоколи между доступными частями и частями резьбовых… … Словарь-справочник терминов нормативно-технической документации
электрическая прочность — минимальная напряжённость однородного электрического поля, при которой наступает пробой диэлектриков. * * * ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ, минимальная напряженность (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) однородного… … Энциклопедический словарь
электрическая прочность — elektrinis atsparumas statusas T sritis fizika atitikmenys: angl. electric strength vok. elektrische Festigkeit, f rus. электрическая прочность, f pranc. rigidité diélectrique, f … Fizikos terminų žodynas
Электрическая прочность — напряжённость однородного электрического поля, при которой наступает Пробой диэлектриков. При определении Э. п. для исключения теплового пробоя измерения производятся, как правило, в импульсном режиме, но импульсы напряжения должны быть… … Большая советская энциклопедия
ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ — св во диэлектриков, характеризуемое напряжённостью однородного электрич. поля, при к рой наступает электрич. пробой, т. е. происходит резкое, скачкообразное увеличение электрической проводимости. Э. п. важная хар ка изоляц. материалов … Большой энциклопедический политехнический словарь
Электрическая прочность диэлектрика
Электрическая прочность диэлектрика является одной из основных характеристик изолирующих материалов. Напряженность электрического поля, при которой электроизолирующий материал может нормально работать, не должна превышать некоторого вполне определенного значения. При некотором значении напряженности происходит нарушение процесса работы диэлектрика, материал его пронизывается искрой, переходящей в дугу. Диэлектрик теряет при этом свои изолирующие свойства, сопротивление его резко уменьшается, и токоведущие части, разделенные ранее изолирующим промежутком, замыкается накоротко. Наступает пробой диэлектрика.
Напряжение, при котором происходит пробой, называется пробивным напряжением Uпр, соответствующее значение напряженности поля – пробивной напряженностью Eпр или пробивной прочностью (электрической прочностью):
где h – толщина диэлектрика.
Совершенно ясно, что электроизоляционный материал в условиях эксплуатации не должен работать при напряжении, могущем вызвать пробой диэлектрика.
Различают два вида пробоя твердого диэлектрика: электрический пробой и тепловой пробой. Электрический пробой объясняется разрушением структуры вещества под действием сил электрического поля. В слабом электрическом поле электрические заряды упруго смещаются, вызывая поляризацию диэлектрика. Если же напряженность поля достигает величины пробивной напряженности, происходит срыв заряженных частиц с первоначальных положений, что приводит к пробою.
Рассмотрим явление теплового пробоя.
Как известно, при работе диэлектрика в переменном электрическом поле выделяется тепло за счет электрических потерь. При отрицательном температурном коэффициенте сопротивления нагрев материала будет сопровождаться уменьшением сопротивления диэлектрика. Это приведет к увеличению тока, проходящего сквозь диэлектрик, и еще более сильному нагреву материала. Таким образом, процесс нагрева все время усиливается до тех пор, пока материал не нагреется настолько, что будет разрушен (расплавлен, обуглен и тому подобное).
Пробой газообразных диэлектриков (воздуха) вызван образованием и движением ионов в газообразной среде при высоких значениях напряженности электрического поля. В некоторый момент быстрое движение ионов в газообразной среде приводит их к столкновению с нейтральными молекулами газа и образованию новых ионов. Это явление сопровождается резким увеличением числа ионов в газе, вследствие чего сопротивление газа уменьшается (ударная ионизация). Наступает пробой газообразного диэлектрика.
В однородном электрическом поле (между двумя остриями, острием и плоскостью, проводами высоковольтных линий и тому подобного), в местах, где напряженность поля достигает критических значений, возникает тихий разряд, сопровождающийся жужжанием или потрескиванием с образованием фиолетового свечения (явление короны). С увеличением напряжения тихий разряд может перейти в искровой, затем в кистевой и, наконец, в дуговой разряд (если мощность источника напряжения велика). Пробой воздуха у поверхности твердого диэлектрика называется поверхностным разрядом (перекрытием). Для увеличения поверхности изоляционных деталей ее делают волнистой.
На пробивную прочность жидких диэлектриков в сильной степени оказывают влияние влага, газы, механические и химические примеси. Пробой жидких диэлектриков возникнет в результате перегрева жидкости и разрушения ее молекул.
В таблице 1 представлены данные электрической прочности некоторых изоляционных материалов.
Электрическая прочность материалов
Наименование диэлектрика | Электрическая прочность, кВ/см |
Бумага кабельная сухая Бумага, пропитанная маслом Воздух Масло трансформаторное Миканит Мрамор Парафин Электрокартон сухой Электрокартон, пропитанный маслом Слюда мусковитая Слюда флогопит Стекло Фибра Фарфор Шифер Эбонит | 60 – 90 100 – 250 30 50 – 180 150 – 300 35 – 55 150 – 300 80 – 100 120 – 170 1200 – 2000 600 – 1250 100 – 400 40 – 110 180 – 250 15 – 30 80 – 100 |
Что такое электрическая прочность диэлектриков
Пробой диэлектрика – это потеря изоляционных свойств материала при его нахождении в электрическом поле. В диэлектрике образуется канал проводимости. При пробое газообразного или жидкого диэлектрика в результате подвижности молекул после снятия напряжения «пробитый» участок восстанавливает свои первоначальные свойства.
Электрическая прочность – это минимальная напряженность однородного электрического поля, при которой происходит пробой диэлектрика.
Близкое к однородному поле можно получить на электродах в виде дисков с закругленными краями или в виде шаров при малом расстоянии между ними. При использовании листовых образцов и плоских электродов однородное поле получается лишь в средней части образца между электродами, у краев поле искажается.
Минимальное напряжение Uпр, приложенное к диэлектрику, и приводящее к образованию в нем проводящего канала, называется пробивным напряжением.
Полный пробой — канал проводимости проходит через всю толщу диэлектрика от одного электрода к другому
Неполный пробой (например, коронный разряд) — канал проводимости не достигает одного из электродов и
Частичный пробой происходит только в газовых или жидкостных включениях (порах) твердой изоляции.
Поверхностный пробой происходит по границе раздела фаз при совместном использовании диэлектриков, находящихся в различных агрегатных состояниях.
На электрическую прочность диэлектриков значительное влияние оказывает неоднородность образующегося в них электрического поля, которая, в свою очередь, зависит от степени неоднородности строения самого твердого диэлектрика.
Е пр воздуха около 3 МВ/м, наибольших значений Епр при электрическом пробое у твердых диэлектриков достигает 10 2 – 10 3 МВ/м, у тщательно очищенных жидких диэлектриков Епр составляет примерно 10 2 МВ/м.
При T> T 3 для U 1 и при T> T 2 для U 2 нарушается тепловое равновесие, происходит прогрессирующий разогрев материала и пробой диэлектрика.
Пробивное напряжение при тепловом пробое:
Е пр при тепловом пробое уменьшается при увеличении температуры, времени выдержки образца под напряжением и толщины диэлектрика из-за ухудшения теплоотвода от внутренних слоев.
1) Постоянное напряжение или низкие частоты: электрохимическое старение, приводящее к уменьшению электрического сопротивления.
2) На высоких частотах может происходить ионизация газа в закрытых порах, вызывающая тепловой эффект и восстановление (в керамике) окислов металлов переменной валентности. Электрохимический пробой также может наблюдаться во многих органических диэлектриках.
На электрохимический пробой сильно влияют электроды материалов (серебро способное диффундировать в керамику облегчает пробой, в отличие от золота).
Пробой газообразных диэлектриков
В газообразных диэлектриках есть некоторое количество свободных ионов и электронов, которые под действием электрического поля начинают перемещаться к аноду. Электрон при соударении с молекулой передает ей часть своей энергии, после этого возможны два варианта событий:
1) молекула ионизируется, испуская электрон, и таким образом, двигаются два электрона, которые могут ионизировать две другие молекулы и теперь уже движутся четыре свободных электрона, которые могут ионизировать следующие четыре молекулы – в результате наблюдается ударная ионизация приводящая к возникновению электронной лавины;
2) молекула переходит в возбужденное состояние и отдает избыточную энергию в форме излучения – фотона, который может ионизировать другую молекулу, таким образом, происходит фотонная ионизация.
Фотоны, двигаясь со скоростью света, опережают электронные лавины и «столкнувшись» с нейтральными молекулами, ионизируют их, давая начало новым электронным («дочерним») лавинам.
Основная и дочерние лавины, двигаясь к аноду, растут, догоняют друг друга, сливаются и образуют электроотрицательный стример — цепочку электронных лавин,. Также образуется поток из положительных ионов (электроположительный стример), который двигается в обратном направлении. Подходя к катоду, положительные ионы, ударяясь о его поверхность, образуют светящееся катодное пятно, излучающее «вторичные» электроны. Положительный стример, заполняясь вторичными электронами и электронами, образующимися в результате электронной ударной ионизации и фотоионизации, превращается в сквозной канал газоразрядной плазмы, по которому устремляется ток короткого замыкания Iкз.
Образование плазменного газоразрядного канала фактически и есть электрический пробой газов. Возникновение Iкз — следствие пробоя.
Рис. 5.2. Зависимость пробивного напряжения U пр.макс воздуха (1) и неона (2) от от произведения давления газа Р на расстояние между электродами h
Пробой жидких диэлектриков
Электрическая форма пробоя наблюдается в тщательно очищенных жидких диэлектриках и связывается с инжекцией электронов с катода.
В технически чистых жидких диэлектриках пробой носит тепловой характер. Энергия, выделяющаяся в ионизирующихся пузырьках газа, приводит к перегреву жидкости, что может послужить причиной закипания капелек влаги (локальный перегрев) и возникновению газового канала между электродами.
Сажа и обрывки волокон в жидкости приводят к искажению электрического поля в жидкости, понижая электрическую прочность жидкого диэлектрика.
На высоких частотах происходит разогрев жидкости за счет релаксационных потерь и наблюдается термическое разрушение жидкости.
Пробой твердых диэлектриков
В твердых диэлектриках может происходить электрический, тепловой или электрохимический пробой.
Ионизационный пробой наблюдается в полимерных диэлектриках, содержащих газовые поры, в которых развиваются процессы ионизации. В результате электронно-ионной бомбардировки стенок пор и действии оксидов азота и озона полимер изменяет химический состав и механически разрушается.
Электромеханический пробой характерен для хрупких диэлектриков и пористых керамик. Он возникает в результате механического разрушения из-за развития микротрещин под действием разрядов в газовых включениях, которые образуют перегретые области диэлектрика.
Электротермический пробой – механическое разрушение полимера при высоком напряжении в результате того, что полимер находится в высокоэластичном состоянии. Причиной является уменьшение толщины диэлектрика из-за электростатического притяжения электродов под действием высокого напряжения.
Электрическая прочность очень тонких неоднородных образцов диэлектриков снижается с увеличением площади электродов, так как возрастает вероятность попадания под них слабых (дефектных) мест.
С увеличением числа слоев тонкой изоляции Епр вначале повышается до определенного числа слоев (слабые места перекрываются здоровыми), а затем снижается, из-за увеличения неоднородности диэлектрика (больше воздуха между листами бумаги) и увеличения неоднородности поля на краях электрода (рисунок 5.3).
Риc. 5.3. Зависимость Eпр тонкослойной изоляции от числа слоев (схематически)
Вопросы для самопроверки
Вопрос. Что называется электрической прочностью?
Ответ. Электрической прочностью называют минимальную напряженность электрического поля при пробое изоляции в однородном электрическом поле.
Вопрос. В чем состоит явление электрического пробоя?
Ответ. Электрический пробой – разрушение диэлектрика, обусловленное ударной ионизацией электронами из-за разрыва связей между атомами, ионами или молекулами.
Вопрос. От чего зависит главным образом электрическая прочность при электрической форме пробоя?
Ответ. Электрическая прочность при электрическом пробое зависит главным образом от внутреннего строения диэлектрика.
Вопрос. При каких условиях возможен электротепловой (тепловой) пробой?
Ответ. Электротепловой (тепловой) пробой возможен, когда выделяющееся в диэлектрике за счет электропроводности или диэлектрических потерь тепло (тепловыделение) становится больше отводимой теплоты.
Вопрос. Время протекания теплового пробоя.
Вопрос. Какие факторы обуславливают снижение электрической прочности при тепловой форме пробоя?
Ответ. Электрическая прочность при тепловом пробое уменьшается: при увеличении температуры; при увеличении времени выдержки образца под напряжением; при увеличении толщины диэлектрика из-за ухудшения теплоотвода от внутренних слоев.
Вопрос. Чем обусловлен электрохимический пробой?
Ответ. Вызывается изменением химического состава и структуры диэлектрика в результате электрического старения.
Вопрос. В чем различие между полным, неполным и частичным пробоем?
Ответ. Полный пробой — канал проводимости проходит через всю толщу диэлектрика от одного электрода к другому. Неполный пробой — канал проводимости не достигает одного из электродов. Частичный пробой происходит только в газовых или жидкостных включениях (порах) твердой изоляции.
Вопрос. Какие виды пробоя возможны в твердых диэлектриках?
Ответ. В твердых диэлектриках, наряду с электрическим, тепловым и электрохимическим пробоем возможны также ионизационный, электромеханический и электротермический механизм пробоя.
Что такое электрическая прочность изоляции и как ее контролировать?
Передача электрической энергии на любые расстояния осуществляется по металлическим проводникам, которые обязательно должны отделятся диэлектриком. От качества изоляции во многом зависят не только эффективность работы энергосистемы, но и безопасность человека. Однако со временем технические характеристики диэлектрика утрачиваются, из-за чего во всех устройствах периодически должна проверяться электрическая прочность изоляции.
Электрическое старение может ускоряться из-за воздействия ряда факторов, чтобы разобраться в них мы более детально рассмотрим строение и физические процессы, протекающие в диэлектрических материалах.
Что такое электрическая прочность?
Под электрической прочностью для любой изоляции следует понимать такую минимальную разность потенциалов, приложенную к единице толщины, при которой начинают происходить разряды. Электрическая прочность представляет собой нелинейную функцию, изменение которой зависит от таких факторов:
Таким образом, можно сказать, что прочность изоляции определяет пробивное напряжение. На практике для каждого материала этот параметр вычисляется эмпирическим путем после проведения многочисленных испытаний.
Рис. 1. Воздействие напряжения на диэлектрик
Величина измеряется как В/мм или кВ/см и т.д., к примеру, сухой воздух, в среднем, обладает прочностью 32кВ/см.
Однако прочность изоляции будет зависеть и от агрегатного состояния материала:
Физически электрическая прочность диэлектриков обеспечивается за счет отсутствия свободных носителей заряда в материале. Молекулы диэлектрика настолько прочно удерживают электроны на крайних орбитах, что даже приложенное напряжение не может вырвать их с орбит. Разумеется, что если рассмотреть идеальный вариант – расположение материала между двумя пластинами, на которые подано напряжение, то через него протекать не будет. Однако все атомы будут получать дополнительную энергию, что создаст большую напряженность электрического поля, как во всей твердой изоляции, так и в каждом отдельном атоме.
Но, если между вышеприведенными пластинами поместить не один кусок диэлектрика, а две из разных материалов или половину из воздуха, а вторую из пластика, то напряженность электрического поля в этих материала будет отличаться из-за того, что у них разная диэлектрическая проницаемость. Это является одним из важнейших факторов снижения электрической прочности.
Причины уменьшения электрической прочности
Самое сильное влияние на состояние изоляции оказывает подача переменного напряжения и температурные скачки до предельных норм и выше. Температурные колебания в большую сторону ускоряют движение атомарных частиц, что повышает проводимость изоляции, и, соответственно, снижает ее электрическую прочность. Понижение температуры имеет обратный эффект – для атомов требуется больше энергии, чтобы предоставить свободу электронам или ионам в толщине диэлектрика.
Переменное напряжение создает поляризацию частиц, которые 100 раз в секунду изменяют свое направление на противоположное. Для материалов с высокой степенью чистоты данный фактор не представляет большой угрозы, однако все включения инородных веществ ведут себя иначе. Из-за неоднородности поля при переходе от изоляции к включению происходит изменение физических параметров электрических величин. Со временем включения расширяются и достигают величины микротрещин, что и приводит к старению изоляции.
Конечным результатом снижения прочности изоляции является электрический пробой, который может привести к разрушению диэлектрика и выходу со строя соответствующего оборудования.
По виду они подразделяются на:
На практике вышеперечисленные виды, чаще всего, дополняют друг друга, поэтому электрическая прочность снижается не сразу, а со временем старения.
Рис. 2. Зависимость видов пробоя
Методы контроля
Контроль состояния и электрической прочности позволяет вовремя выявлять дефекты или старение диэлектрика в обмотках силовых трансформаторов, проходных и опорных изоляторах, высоковольтных вводах, силовых кабелях и других видах оборудования. Благодаря этому устройства можно заменить или отремонтировать, просушить изоляционную среду или установить новую обмотку. Современные испытательные установки для проверки электрической прочности могут применять различные методики.
Наиболее популярными являются:
Примеры расчетов
Для вычисления электрической прочности любого диэлектрика вам необходимо знать условия эксплуатации и геометрические параметры, которые затем сравниваются с табличными данными. Например, если у вас имеется промежуток с воздушным диэлектриком 2 см, к которому будет приложено напряжение в 20 кВ.
Далее вычислим напряженность электромагнитного поля по формуле:
где E – это напряженность поля, U – напряжение в электрической цепи, d – толщина изоляционного слоя.
Рис. 4. Пример расчета
Тогда напряженность для этого примера составит E = 20/2 = 10 кВ/см. Далее сравниваем полученную величину с электрической прочностью для воздуха из таблицы ниже:
Таблица: Электрическая прочность материалов
Наименование диэлектрика | Электрическая прочность, кВ/см |
Бумага кабельная сухая | 60 – 90 |
Бумага, пропитанная маслом | 100 – 250 |
Воздух | 30 |
Масло трансформаторное | 50 – 180 |
Миканит | 150 – 300 |
Мрамор | 35 – 55 |
Парафин | 150 – 300 |
Электрокартон сухой | 80 – 100 |
Электрокартон, пропитанный маслом | 120 – 170 |
Слюда мусковитая | 1200 – 2000 |
Слюда флогопит | 600 – 1250 |
Стекло | 100 – 400 |
Фибра | 40 – 110 |
Фарфор | 180 – 250 |
Шифер | 15 – 30 |
Эбонит | 80 – 100 |
Из таблицы видим, что пробой воздуха может начаться при 30 кВ/см, в наших расчетах получилась величина 10 кВ/см, значит, изоляция нормально выдержит такой режим работы.