Что такое эффект гиббса
Эффект Гиббса
Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса. При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.
Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции. Пример явления Гиббса для радиоимпульса приведен на рис. 4.6 (использована программа на рис. 4.4, точками показан реконструированный сигнал с увеличением масштаба в 10 раз).
На рис. 4.7 приведен пример разложения в ряд Фурье одного периода T=(a,c) модельного периодического сигнала sq(x), представленного информационным сигналом s(x) в сумме с шумовым сигналом. Спектр шумов близок к спектру белого шума (равномерное распределение энергии шумов по всем частотам спектра).
На спектре модельного сигнала достаточно четко выделяется диапазон частот информационного сигнала. Реконструкция сигнала с ограничением ряда Фурье гармониками только информационного сигнала (сигнал sr5(x), N=5) дает сглаженную форму сигнала по минимуму среднеквадратического расхождения с модельным сигналом для данного количества членов ряда, но только по периоду разложения (а, с), и наиболее точное приближение к информационному сигналу. При увеличении в реконструкции количества членов ряда Фурье восстановленный сигнал начинает приближаться к модельному сигналу, но только по данному периоду T=(a,c), при этом расхождение с информационным сигналом увеличивается. Заметим, что спектр сигнала может определяться и по нескольким периодам сигнала, что повышает точность реконструкции информационного сигнала.
В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (4.1-4.6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. При этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 4.8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье.
При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Методические ошибки цифровой фильтрации
Методическими ошибками называются искажения сигналов, возникшие при цифровой обработке, обусловленные несовершенством выбранных методов.
Содержание
Явление Гиббса
Сущность явления Гиббса
Эти эффекты при усечении рядов Фурье получили название явления Гиббса.
При усечении рядов Фурье определенное искажение функции, разложенной в ряд Фурье, существует всегда, но при малой доле энергии отсекаемой части сигнала этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее выразительно.
Параметры эффекта
Амплитуда последующих осцилляций постепенно затухает.
Можно рассмотреть это явление и с других позиций. Как известно, произведение функций отображается в частотном представлении сверткой их фурье-образов. Отсюда:
Применение на практике
При расчетах фильтров и усечении размеров их операторов явление Гиббса является весьма нежелательным, т. к. приводит к искажению формы передаточных характеристик фильтров. В качестве примера рассмотрим явление Гиббса применительно к фильтру низких частот.
Функция четная, коэффициенты ряда Фурье представлены только косинусными членами:
Как показывает рисунок, явление Гиббса существенно искажает передаточную функцию фильтра. Однако при реализации фильтров ограничение длины операторов фильтров является правилом их конструирования исходя из чисто практических соображений реализации.
Явление Гиббса имеет место при усечении любых числовых массивов. При обработке геофизических данных операция усечения числовых массивов, как одномерных, так и многомерных, относится к числу типовых. Из профилей и площадей вырезаются участки съемки с аномальными данными для их более детальной обработки и интерпретации. При анализе усекаются корреляционные функции и соответственно свертываются с частотным образом весового окна вычисляемые спектры мощност. Во всех этих случаях можно столкнуться как с явлением Гиббса, так и с другими последствиями свертки функций в частотной области, в частности с цикличностью свертки, с определенным сглаживанием спектров усекаемых данных, которое может быть и нежелательным (снижение разрешающей способности), и полезным (повышение устойчивости спектров). В самих усекаемых данных мы не видим этих явлений, т. к. они проявляется в изменении их частотного образа, но при обработке данных, основной целью которой, как правило, и является изменение частотных соотношений в сигналах, последствия этих явлений могут сказаться самым неожиданным образом.
Практически это означает, что при частотной обработке вырезанного сигнала будет обрабатываться не спектр исходного сигнала, а спектр, которому соответствует сигнал, восстанавливаемый по данному спектру с наложенным явлением Гиббса.
Весовые функции
Основное назначение рассматриваемых весовых функций – сведение к минимуму нежелательных эффектов усечения функций.
Естественным методом нейтрализации нежелательных эффектов усечения сигналов во временной области (и любой другой области аргументов) является изменение окна селекции сигнала таким образом, чтобы частотная характеристика окна селекции при свертке как можно меньше искажала спектр сигнала. Что последнее возможно, показывает, например, даже такая простая модификация прямоугольной функции, как уменьшение в два раза значений ее крайних членов. Фурье-образ модифицированной П-функции уже рассматривался нами в составе сглаживающих фильтров МНК 1-го порядка, отличается от обычной П-функции с тем же размером окна выходом в ноль на частоте Найквиста и несколько меньшей амплитудой осцилляций при небольшом расширении главного максимума.
Основные весовые функции
В настоящее время известны десятки различных по эффективности весовых функций. В идеальном случае хотелось бы иметь весовую свертывающую функцию с минимальной амплитудой осцилляций, высокую и узкую в главном максимуме.
Сравнительный вид весовых функций приведен на рис. 7. Расчет функций проведен с исключением нулевых значений на границах весового окна.
Спектральные окна Бартлетта и Карре не имеют отрицательных выбросов и применяются, в основном, для усечения корреляционных функций. Функция Карре не имеет нулей и представляет собой положительно убывающую функцию. Функции Хеннинга и Хемминга примерно одного класса, функция Хемминга является улучшенным вариантом функции Хеннинга. Частотные образы функций Бартлетта и Хемминга приведены на рис. 8.
Попутно заметим, что достаточно гладкие частотные характеристики весовых функций позволяют использовать их в качестве сглаживающих низкочастотных НЦФ.
Эффект Гиббса
Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса. При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.
Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции. Пример явления Гиббса для радиоимпульса приведен на рис. 4.6 (использована программа на рис. 4.4, точками показан реконструированный сигнал с увеличением масштаба в 10 раз).
На рис. 4.7 приведен пример разложения в ряд Фурье одного периода T=(a,c) модельного периодического сигнала sq(x), представленного информационным сигналом s(x) в сумме с шумовым сигналом. Спектр шумов близок к спектру белого шума (равномерное распределение энергии шумов по всем частотам спектра).
На спектре модельного сигнала достаточно четко выделяется диапазон частот информационного сигнала. Реконструкция сигнала с ограничением ряда Фурье гармониками только информационного сигнала (сигнал sr5(x), N=5) дает сглаженную форму сигнала по минимуму среднеквадратического расхождения с модельным сигналом для данного количества членов ряда, но только по периоду разложения (а, с), и наиболее точное приближение к информационному сигналу. При увеличении в реконструкции количества членов ряда Фурье восстановленный сигнал начинает приближаться к модельному сигналу, но только по данному периоду T=(a,c), при этом расхождение с информационным сигналом увеличивается. Заметим, что спектр сигнала может определяться и по нескольким периодам сигнала, что повышает точность реконструкции информационного сигнала.
В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (4.1-4.6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. При этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 4.8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье.
При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.
3.7.1. Сущность эффекта Гиббса
при этом сходимость суммы остающихся членов ряда к исходной передаточной функции ухудшается, и происходит отклонение частотной характеристики фильтра от первоначальной в тем большей степени, чем меньше значение N.
Особенно ярко это проявляется на крутых перепадах (разрывах, скачках) в передаточных функциях:
· крутизна перепадов «размывается», так как она не может быть больше, чем крутизна (в нулевой точке) последней сохраненной гармоники ряда (3.63);
· по обе стороны «размытых» перепадов появляются выбросы и затухающие осцилляции с частотой, равной частоте последнего сохраненного или первого отброшенного члена ряда (3.62).
Эти эффекты при усечении рядов Фурье получили название эффекта Гиббса. Рассмотрим явление Гиббса более подробно на примере разложения в ряд Фурье частотной функции единичного скачка G(w), которая является Фурье-образом какой-то дискретной временной функции b(n). Уравнение функции единичного скачка в частотной области имеет вид:
Функция (3.64) имеет разрыв величиной 1 в точке w = 0 и, в силу дискретности временной функции и периодичности ее спектра, в точках p, 2p и т.д. Поскольку функция G(w) является нечетной, ее ряд Фурье не содержит косинусных членов, и коэффициенты ряда (рис. 3.29) определяются из выражения:
Как видно из рис. 3.29, ряд коэффициентов bn затухает очень медленно. Соответственно, медленно будет затухать и ряд Фурье функции G(w):
Если мы будем ограничивать количество коэффициентов bn, т.е. ограничивать значение N ряда Фурье функции G(), то суммирование в выражении (3.65) будет осуществляться не до ∞, а до значения N. Графики частичных сумм ряда (3.65) в сопоставлении с исходной функцией (рис. 3.30) наглядно показывают сущность явления Гиббса.
При усечении рядов Фурье определенное искажение функции, разложенной в ряд Фурье, существует всегда. Но при малой доле энергии отсекаемой части сигнала этот эффект может быть и малозаметен. На скачках и разрывах функций он проявляется наиболее ярко.
3.7. Эффект Гиббса
Большинство методов анализа и обработки данных представляют собой или имеют в своем составе операцию свертки множества данных x(k) с функцией оператора свертки h(n). Как множество данных x(k), так и оператор h(n), выполняющий определенную задачу обработки данных и реализующий определенную частотную передаточную функцию системы (фильтра), могут быть бесконечно большими. Практика цифровой обработки имеет дело только с ограниченными множествами данных (k=0,1,2,…,K) и коэффициентов оператора (n = 0,1,2,…,N или n = —N,…,1,0,1,…,N для двусторонних операторов).
В общем случае, эти ограниченные множества «вырезаются» из бесконечных множеств x(k) и h(n), что равносильно умножению этих множеств на прямоугольную функцию с единичным амплитудным значением, которую называют естественным временным окном или естественной весовой функцией. Так как произведение функций отображается в спектральной области сверткой их фурье-образов, это может весьма существенно сказаться как на спектральных характеристиках функций, так и на результатах их последующих преобразований и обработки. Основное назначение рассматриваемых весовых функций – сведение к минимуму нежелательных эффектов усечения функций.
Чаще всего с изменением частотных характеристик функций приходится сталкиваться при усечении операторов фильтров. На примере усечения операторов и рассмотрим характер происходящих изменений.
При расчетах фильтров, как правило, задается определенная частотная передаточная характеристика фильтра, и по ней производится расчет оператора фильтра h(n), количество членов которого может оказаться очень большим. даже толь
ко по значимым значениям. Усечение может рассматриваться как результат умножения функции оператора фильтра на селектирующее весовое окно длиной 2N + 1. В простейшем случае это окно представляет собой П-образную селектирующую функцию:
Если абстрагироваться от тактовой частоты цифрового фильтра и перейти к относительному времени, то можно предположить, что D=1, тогда частотная передаточная характеристика будет иметь вид: