Что такое чистый водород

$100 млрд на зеленом и голубом газу

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Документ разработан в Минэнерго и согласован с компаниями и профильными ведомствами, сообщил РБК представитель Минэнерго. По его словам, сейчас начата процедура согласования концепции с правительством. РБК направил запрос в пресс-службу правительства.

Разница в прогнозах связана с различными сценариями развития мирового рынка водорода в качестве энергоносителя и, соответственно, от спроса на него, следует из документа. Сейчас такого рынка нет, но в будущем он может стать крупным благодаря развитию технологий и масштабированию водородной энергетики, считают авторы концепции. Рынок может быть как глобальным — «с крупнотоннажными перевозками водорода от центров производства к центрам потребления по аналогии с рынками нефти и сжиженного природного газа (СПГ)», так и локальным, когда производство и потребление водорода будут сосредоточены в рамках одних и тех же стран или регионов, говорится в документе.

Россия как потенциально крупный поставщик водорода заинтересована в формировании глобального рынка водородных энергоносителей, подчеркивается в концепции.

Цветовая шкала для водорода

Для классификации водорода по технологиям производства и исходному сырью используется цветовая шкала. «Серый» водород производят из природного газа путем конверсии метана на крупнотоннажном производстве, «бурый» водород — из угля. Производство «серого» и «бурого» водорода предполагает выбросы углекислого газа (СО2) в атмосферу.

«Зеленый» водород получается электролизом воды из возобновляемых источников (ВИЭ), «желтый» — за счет электролиза при использовании атомной энергии (оба без выбросов СО2 или с их минимальным количеством). «Голубой» и «синий» водород производят из природного газа с последующим преобразованием CO2 в углерод по технологии CCS (Carbon Capture and Sequestration, улавливание и хранение углерода).

Как нарастить экспорт водорода

В России будут развивать технологии производства как «зеленого», так и «голубого» водорода, заявлял глава Минпромторга Денис Мантуров 13 апреля на конференции Ассоциации европейского бизнеса. По его словам, водород будет использоваться для нужд автотранспорта наряду с другими видами газомоторного топлива (сжиженный и компримированный, или сжатый, природный газ).

Сейчас в России нет промышленных проектов по производству «зеленого» водорода, говорил РБК глава столичного дептранса Максим Ликсутов. «Росатом» производит в год 4,2 тыс. т «желтого» низкоуглеродного водорода, уточняет доцент базовой кафедры возобновляемых источников энергии Российского государственного университета нефти и газа им. Губкина Владислав Карасевич. По его данным, российская нефтяная, атомная и аграрная промышленность производит около 3 млн т «серого» водорода в год для собственных нужд. Ежегодный же экспорт и импорт — это лишь 5 т, добавляет он.

Россия нацелена занять 20% мирового рынка водорода к 2030 году, говорил замглавы Минэнерго Павел Сорокин на коллегии министерства 12 апреля. «Мы считаем, что это (экспорт из России «зеленого» водорода. — РБК) в 2035 году может быть от 1 млн до 2 млн т в «низком» сценарии, до 7 млн т — при более активном бурном развитии [спроса на водород в мире]», — сказал он.

По данным Минэнерго, спрос на экологически чистый водород может существенно вырасти из-за планов Евросоюза к 2050 году достичь полной углеродной нейтральности (равенства вредных выбросов, выделяемых в атмосферу и извлекаемых оттуда). Частью «зеленых» инициатив ЕС является введение трансграничного углеродного налога — пошлины на импортируемые товары с большим углеродным следом. Этот налог может обойтись российским экспортерам от €33 млрд до €50,6 млрд до 2030 года, оценивали эксперты KPMG.

Кто планирует производить экологичный водород в России

Для достижения амбициозных целей в области производства и экспорта экологичных типов водорода Минэнерго к 2024 году предлагает создать четыре кластера по географическому принципу — Северо-Западный, Восточный, Арктический и Южный. Ведомство считает необходимым предоставить производителям меры господдержки: от специальных инвестконтрактов и возмещения части затрат на производство высокотехнологичной продукции до возмещения части затрат на купонный доход по «зеленым» облигациям, средства от продажи которых пойдут на финансирование таких проектов.

Для выполнения целей, указанных в проекте Концепции развития водородной энергетики, необходимо уже сейчас значительно активизировать работу по созданию мощностей для производства водорода, ориентированных на экспорт, а также договориться с заинтересованными потребителями и определить возможные варианты его транспортировки, замечает Карасевич.

«Росатом» к лету 2021 года рассчитывает представить результаты технико-экономического обоснования пилотного проекта поставок в Японию водорода, произведенного методом электролиза, сообщил 26 марта вице-президент по маркетингу и развитию бизнеса «Русатом Оверсиз» Антон Москвин, выступая на вебинаре «Водородная стратегия и ключевые тренды энергоперехода». В феврале «Росатом» сообщал, что способен обеспечить до 40% спроса Японии на водород до конца ближайшего десятилетия. В качестве приоритетного сценария экспортного японского проекта рассматривается организация производства сжиженного водорода на территории Сахалинской области и поставок его по морю в Японию. Кроме того, компания планирует в тестовом режиме запустить поезда на водороде на Сахалине.

Замглавы правления «Газпрома» Олег Аксютин в конце марта говорил, что компания планирует экспортировать водород в страны Азии. «Особый интерес представляет возможность производства водорода на территории Дальнего Востока методом парового риформинга метана с обеспечением улавливания и захоронения диоксида углерода («синий» водород. — РБК) и последующим экспортом водорода в страны-потребители (Япония, Южная Корея, Китай)», — отмечал он, не уточняя сроков начала экспорта.

Крупнейший в России производитель сжиженного природного газа НОВАТЭК вместе со своим французским партнером Total прорабатывает проект улавливания CO2 на Ямале и создания производств водорода для собственных нужд и на продажу, указывал начальник управления по связям с инвесторами компании Александр Назаров на конференции Московской школы управления «Сколково». Тогда же президент BP Russia Дэвид Кэмпбелл сказал, что британский мейджор заинтересован в сотрудничестве с российскими компаниями в проектах по производству водорода и развития технологии улавливания и хранения СО2. Сама компания собирается построить завод по производству «голубого» водорода в Великобритании.

РБК направил запросы в пресс-службы «Росатома», «Газпрома» и НОВАТЭКа по поводу их участия в разработке Концепции развития водородной энергетики и планов по производству и экспорту водорода до 2050 года.

Водород для транспорта

Источник

Как собирать, хранить и поставлять водород

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

В одном из прошлых постов мы выяснили, что в обозримой перспективе себестоимость производства водорода снизится настолько, что этот газ станет конкурентоспособным энергоносителем на транспорте и в энергетике. Но есть ещё одна потенциальная проблема водородной экономики: хранить, транспортировать и поставлять H2 не так просто, как кажется. В этот раз мы расскажем, какие технологии решат эти задач и не «съедят» ли транспортные издержки прибыль будущих водородных магнатов.

Где и как хранить водород

По мере превращения водорода из промышленного в потребительский товар — им будут заправлять машины, питать электросистему и отопление домов — его нужно будет запасать в больших количествах. Это нужно будет и для того, чтобы цены на водород не скакали. Причём газ будет храниться долго, поэтому не столько важна скорость закачки/откачки и расположение, сколько объём хранилищ.

Второй естественный резервуар для водорода — истощённые пласты залежей природного газа или нефти и водоносные горизонты. Они больше соляных пещер, но водород в них сильнее загрязняется, вступая в реакцию с горной породой, микробами, жидкостями. В такие пещеры водород пока не закачивают, поэтому считать «экономику» рано.

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водородКарта водородного будущего Европы. Большинство соляных пещер для водорода (обозначены зелёными треугольниками) сосредоточено на севере Германии, в Нидерландах и Франции. Источник: European Hydrogen Backbone Perspective, 2020.

Однако для краткосрочного и мелкомасштабного хранения водорода такие «пещеры горного короля» не подходят — нужны баки. В резервуарах хранят сжатый или сжиженный водород, который можно быстро закачать или откачать в нужных объёмах.

Сжатый водород (при давлении 700 бар, т. е. приблизительно 690 атм.) имеет только 15% плотности энергии (количество энергии на единицу объёма) бензина, и чтобы хранить эквивалентное количество топлива, скажем, на водородной заправке, нужно в семь раз больше места.

Поэтому водород скорее всего будут мешать с аммиаком, у которого плотность больше, а места такой смеси требуется меньше, что позволит транспортировать больше водорода без увеличения объёма хранилища. Правда, придётся потратиться на конверсию и реконверсию смеси.

В каком виде транспортировать водород

Проблема подготовки водорода для транспортировки решается по-разному: H2 сжимают, сжижают, смешивают с другими веществами. У каждого из этих вариантов свои преимущества и недостатки, а оптимальное решение зависит от географии поставок, расстояния, объёма и вида водорода для потребителя.

В любом агрегатном состоянии (кроме твёрдого, конечно) водород можно пустить по имеющимся газовым трубам, что однозначно дешевле, чем строить новую инфраструктуру. Первый кандидат — газовые сети. В мире насчитывается 3 млн километров газопроводов и 400 млрд кубометров подземных хранилищ метана. Но с этим есть технические проблемы:

у водорода низкая плотность энергии, и объёмы (или время) его поставки через газопровод придётся увеличить;

водород очень горюч на воздухе, поэтому чтобы снизить риски, придётся менять оборудование по всей цепочке поставок;

не всякая инфраструктура для, например, метана подойдёт водороду; особенно это касается потребительских котлов, бойлеров и т. п. (об этом подробнее ниже);

В итоге наряду с газообразным водородом нам придётся производить его сжиженные и смешанные версии.

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водородКак адаптировать мелких потребителей к водороду? На рисунке — возможный вариант. Это H2Rex — водородный генератор компании Toshiba (о нём мы рассказывали). Его топливные элементы вырабатывают электричество с помощью электрохимических реакций между полученным водородом и кислородом из атмосферы. Результат — электричество и тепло, которые получает потребитель. Источник: Toshiba ESS

Схожим образом водород можно включить в жидкий органический носитель. На конверсию и реконверсию при этом уйдёт 35-40% водорода, хотя объёмы поставок эти издержки покрывают.

Некоторые жидкие органические носители водорода могут быть негорючими, что делает перевозку безопаснее. Источник: Hydrogenious LOHC Technologies / YouTube

Как доставлять водород

Как и углеводороды сейчас, водород перемещать по миру в основном будут трубы, суда и автоцистерны. Отправлять H2 поездами в целом будет дороже, хотя удалённым потребителям в локациях без трубопровода это возможно. В мире сегодня существует много водородопроводов, но в основном они не выходят за пределы технологических площадок химических и нефтеперерабатывающих заводов. Поэтому более оптимальный вариант — трубы для передачи природного газа.

Однако далеко не все они подходят для прокачки водорода из-за типа стали: трубы из низкопрочной стали будут портиться из-за контакта с водородом (водородное охрупчивание) и давления прокачки. При этом их пропускная способность должна быть в три раза выше из-за низкой плотности водорода. Последнее решается, как мы уже выяснили, смешиванием водорода с жидкостями, и для таких соединений также есть трубопроводы. В частности, трубы используют для прокачки аммиачно-водородной смеси. Один из аммиакопроводов, к примеру, идёт из Тольятти (Россия) до Одессы (Украина) (2,4 тыс. км).

Однако трубопровод подойдёт не для всех потребителей. В некоторые страны H2 доставят морем. Пока танкеры для перевозки водорода массово не производят. Первое такое судно, получившее название Suiso Frontier, построила компания Kawasaki Heavy Industries, а спустили его на воду в декабре 2019 года в Кобе (Япония). В марте 2020 года на танкер установили резервуар объёмом 1 250 куб. м, в котором водород будут перевозить в сжиженном состоянии.

В других проектах предполагаются танкеры, схожие по размеру с судами для СПГ, которые в качестве топлива будут сжигать в день примерно 0,2% от перевозимого водорода. Более перспективны в этом отношении танкеры, которые сейчас перевозят сжиженный нефтяной газ (СНГ). В их резервуары можно залить аммиачную и другие подобные смеси водорода. Газовозами доставлять водород дороже, чем по трубопроводам.

Правда, обычно перевозят таким способом в пределах 300 км: дальше становится невыгодно. Развитие автоперевозок водорода будет зависеть от вместимости баков. Теоретически один прицеп со сжатым газообразным водородом может вместить до 1 100 кг в лёгких композитных цилиндрах (под давлением 500 бар). Однако этот показатель редко достигается на практике, поскольку правила во всем мире ограничивают допустимое давление, высоту, ширину и вес цистерн.

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водородПотреблять бензин или солярку грузовику совсем не обязательно — его ДВС может работать на всё том же водороде. Hyundai XCIENT Fuel Cell — первый массовый грузовик на водороде, десять копий которого поставили в 2020 в Швейцарию для коммерческого использования. Заправить такой грузовик можно 32 кг водорода, которые ему хватит примерно на 400 км хода. Источник: Hyundai.news

Второй вариант — автоцистерны со сжиженным водородом, если есть постоянные потребители и объёмы поставки компенсируют расходы на сжижение.

Как видно, экономика автоперевозок зависит от объёма поставок: чем больше требуется водорода, тем более выгодно построить трубопровод. Чем меньше и чем ближе потребитель, тем выгоднее возить водород грузовиками

Итого: сколько стоят путешествия водорода

Прежде чем подвести предварительный итог напомним, во сколько обойдётся производство «зелёного» водорода и при какой цене он станет конкурентоспособным относительно традиционных энергоносителей.

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водородКак видно, с учётом доставки «зелёный» водород на возобновляемых источниках энергии, добытый в Японии, будет дороже импортированного из Австралии или Ближнего Востока. А вот Европа вполне может не зависеть от его поставок из Северной Африки. Источник: International Energy Agency

Более того, мы в Toshiba знаем, как включить в цепь добавленной водородной стоимости новые технологии, которые позволят снизить транспортные издержки.

Как построить водородную цепь добавленной стоимости

Вырисовывается такая картина: в густонаселенных районах Европы и США водород от большого числа местных поставщиков для небольших потребителей в основном будут возить грузовики. Крупные потребители будут получать водород либо по трубопроводам от дальних поставщиков, либо импортировать морем из соседних стран (Латинская Америка для США и Северная Африка с Ближним Востоком — для Европы).

Японии будет сложнее: местный водород будет сравнительно дорогим, поэтому для крупных потребителей возможны поставки морем из стран ближнего и дальнего зарубежья. Правда, водородная энергетика всё-таки будет «демократичнее» углеводородной благодаря доступности возобновляемых источников энергии большому числу потребителей.

В последнем случае конвертировать полученный водород поможет наш генератор на топливных элементах H2Rex, который уже производит электричество и тепло из водорода и воздуха, к примеру, для гостиницы в Кавасаки. Небольшим и удалённым от производства H2 потребителям подойдут мини-электростанции типа нашей H2One. Она вырабатывает водород методом электролиза из воды, который поддерживается встроенной солнечной батареей.

Мы убеждены, что интеграция таких источников и преобразователей энергии в сочетании со строительством водородных электростанций на ВИЭ позволит снизить зависимость потребителей от зарубежных поставок H2, которые могут оказаться для них дорогими.

Источник

Водород

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Название, символ, номерВодород / Hydrogenium (H), 1Атомная масса
(молярная масса)[ 1,00784 ; 1,00811]а. е. м. (г/моль)Электронная конфигурация1s 1Радиус атома53 пмКовалентный радиус32 пмРадиус иона54 (−1 e) пмЭлектроотрицательность2,20 (шкала Полинга)Степени окисления+1, 0, −1Энергия ионизации
(первый электрон)1311,3 (13,595) кДж/моль (эВ)Плотность (при н. у.)0,0000899 (при 273 K (0 °C)) г/см³Температура плавления14,01 K; −259,14 °CТемпература кипения20,28 K; −252,87 °CУд. теплота плавления0,117 кДж/мольУд. теплота испарения0,904 кДж/мольМолярная теплоёмкость28,47 Дж/(K·моль)Молярный объём14,1 см³/мольСтруктура решёткигексагональнаяПараметры решёткиa = 3,780 c = 6,167 ÅОтношение c/a1,631Температура Дебая110 KТеплопроводность(300 K) 0,1815 Вт/(м·К)Номер CAS12385-13-6

Водород (H, лат. hydrogenium ) — химический элемент периодической системы с обозначением H и атомным номером 1, самый лёгкий из элементов периодической таблицы. Его одноатомная форма — самое распространённое химическое вещество во Вселенной, составляющее примерно 75 % всей барионной массы. Звёзды, кроме компактных, в основном состоят из водородной плазмы.

Три изотопа водорода имеют собственные названия: 1 H — протий, 2 H — дейтерий и 3 H — тритий (радиоактивен). Ядро самого распространённого изотопа, протия, состоит из одного только протона и не содержит нейтронов.

При стандартных температуре и давлении водород — бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ с химической формулой H2, который в смеси с воздухом или кислородом горюч и крайне пожаро- и взрывоопасен. В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях.

Растворим в этаноле и ряде металлов: железе, никеле, палладии, титане, платине, ниобии.

Содержание

История открытия

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Впервые водород получил Парацельс, погружая железные опилки в серную кислоту в XVI веке.

В 1671 году Роберт Бойль подробно описал реакцию между железными опилками и разбавленными кислотами, при которой выделяется газообразный водород.

В 1766 году Генри Кавендиш был первым, кто признал газообразный водород индивидуальным элементом, назвав газ, выделяющийся при реакции металла с кислотой «горючим воздухом». Он предположил, что «горючий воздух» идентичен гипотетическому веществу, называемому «флогистон», и в 1781 году обнаружил, что при его сгорании образуется вода.

Прямо указывал на выделение водорода и Михаил Ломоносов, но он уже понимал, что это не флогистон.

Французский химик Антуан Лавуазье совместно с инженером Жаном Мёнье, используя специальные газометры, в 1783 году осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Так он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — вода и γεννάω — рождаю) — «рождающий воду». В 1801 году последователь Лавуазье, академик Василий Севергин, называл его «водотворное вещество», он писал:

Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление.

Русское наименование «водород» предложил химик Михаил Соловьёв в 1824 году — по аналогии с «кислородом» Ломоносова.

Распространённость

Во Вселенной

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

В настоящее время водород — самый распространённый элемент во Вселенной. На его долю приходится около 88,6 % всех атомов (около 11,3 % составляют атомы гелия, доля всех остальных вместе взятых элементов — порядка 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. Повсеместное возникновение атомарного водорода впервые произошло в эпоху рекомбинации.

В условиях звёздных температур (например, температура поверхности Солнца

6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна

52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода.

В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму для сухого воздуха).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках, где по числу атомов на водород приходится почти 63 %.

Получение

В промышленности

На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м 3 газа. Почти все остальное получают из угля. Около 0,1 % (

100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает

830 млн тонн CO2. Себестоимость водорода из природного газа оценивается в 1,5-3 доллара за 1 кг.

В лаборатории

Очистка

В промышленности реализованы несколько способов очистки водорода из углерод-содержащего сырья (т. н. водородсодержащий газ — ВСГ).

Стоимость

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2—7 USD/кг. В небольших количествах перевозится в стальных баллонах зелёного или тёмно-зелёного цвета.

Физические свойства

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Водород — самый лёгкий газ: он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх. Чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

В 1935 году Уингер и Хунтингтон высказали предположение о том, что при давлении свыше 250 тысяч атм водород может перейти в металлическое состояние. Получение этого вещества в устойчивом состоянии открывало очень заманчивые перспективы его применения — ведь это был бы сверхлёгкий металл, компонент лёгкого и энергоёмкого ракетного топлива. В 2014 году было установлено, что при давлении порядка 1,5—2,0 млн атм водород начинает поглощать инфракрасное излучение, а это означает, что электронные оболочки молекул водорода поляризуются. Возможно, при ещё более высоких давлениях водород превратится в металл. В 2017 году появилось сообщение о возможном экспериментальном наблюдении перехода водорода в металлическое состояние под высоким давлением.

Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород. Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) спины ядер параллельны, а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1. Десорбированный с угля параводород при нагревании превращается в ортоводород с образованием равновесной смеси. При комнатной температуре равновесна смесь ортоводорода и параводорода в отношении около 75:25. Без катализатора взаимное превращение происходит относительно медленно, что даёт возможность изучить свойства обеих модификаций. В условиях разреженной межзвёздной среды характерное время перехода в равновесную смесь очень велико, вплоть до космологических.

Изотопы

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Наиболее известны три изотопа водорода: протий 1 H (атомное ядро — протон), дейтерий 2 H (ядро состоит из одного протона и одного нейтрона) и тритий 3 H (ядро состоит из одного протона и двух нейтронов). Эти изотопы имеют собственные химические символы: протий — H, дейтерий — D, тритий — T.

Искусственно получены также тяжёлые радиоактивные изотопы водорода с массовыми числами 4—7 и периодами полураспада 10 −21 —10 −23 с.

Природный молекулярный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание в нём молекул из чистого дейтерия D2 ещё меньше, отношение концентраций HD и D2 составляет примерно 6400:1.

Из всех изотопов химических элементов физические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Температура
плавления,
K
Температура
кипения,
K
Тройная
точка
Критическая
точка
Плотность,
кг/м³
T, KP, кПаT, KP, МПажидкийгаз
H213,9620,3913,967,332,981,3170,8111,316
HD16,6522,1316,612,835,911,48114,01,802
HT22,9217,6317,737,131,57158,622,31
D218,6523,6718,7317,138,351,67162,502,23
DT24.3819,7119,439,421,77211,542,694
T220,6325,0420,6221,640,441,85260,173,136

Молекулы чистых протия, дейтерия и трития могут существовать в двух аллотропных модификациях (отличающихся взаимной ориентацией спинов ядер) — орто- и параводород: o-D2, p-D2, o-T2, p-T2. Молекулы водорода с другим изотопным составом (HD, HT, DT) не имеют орто- и парамодификаций.

Свойства изотопов

Свойства изотопов водорода представлены в таблице.

ИзотопZNМасса, а. е. м.Период полураспадаСпинСодержание в природе, %Тип и энергия распада
1 H101,007 825 032 07(10)стабилен1 ⁄2 +99,9885(70)
2 H112,014 101 777 8(4)стабилен1 +0,0115(70)
3 H123,016 049 277 7(25)12,32(2) года1 ⁄2 +β −18,591(1) кэВ
4 H134,027 81(11)1,39(10)⋅10 −22 с2 −-n23,48(10) МэВ
5 H145,035 31(11)более 9,1⋅10 −22 с( 1 ⁄2 + )-nn21,51(11) МэВ
6 H156,044 94(28)2,90(70)⋅10 −22 с2 −−3n24,27(26) МэВ
7 H167,052 75(108)2,3(6)⋅10 −23 с1 ⁄2 +-nn23,03(101) МэВ

В круглых скобках приведено среднеквадратическое отклонение значения в единицах последнего разряда соответствующего числа.

Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Химические свойства

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Молекулы водорода достаточно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например, с кальцием, образуя гидрид кальция:

и с единственным неметаллом — фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например, при освещении:

Записанное уравнение отражает восстановительные свойства водорода.

С галогенами образует галогеноводороды:

С сажей взаимодействует при сильном нагревании:

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

Взаимодействие с оксидами металлов

Оксиды металлов (как правило, d-элементов) восстанавливаются до металлов:

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр., Катализатор Уилкинсона), так и гетерогенным (напр., никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Геохимия водорода

На Земле содержание водорода понижено по сравнению с Солнцем, планетами-гигантами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована: основная масса водорода, как и других летучих элементов, покинула планету во время аккреции или вскоре после неё. Однако точное содержание данного газа в составе геосфер нашей планеты (исключая земную кору) — астеносферы, мантии, ядра Земли — неизвестно.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах. Известно содержание водорода в составе вулканических газов, истечение некоторых количеств водорода вдоль разломов в зонах рифтогенеза, выделение этого газа в некоторых угольных месторождениях.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и воды.

В атмосфере молекулярный водород непрерывно образуется в результате разложения формальдегида, образующегося в цепочке окисления метана или другой органики, солнечным излучением (31—67 гигатонн/год), неполного сгорания различных топлив и биомасс (по 5—25 гигатонн/год), в процессе фиксации азота микроорганизмами из воздуха (3−22 гигатонн/год).

Имея малую массу, молекулы водорода в составе воздуха обладают высокой тепловой скоростью (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут навсегда улететь в космическое пространство (см. Диссипация атмосфер планет). Объёмы потерь оцениваются в 3 кг в секунду.

Что такое чистый водород. Смотреть фото Что такое чистый водород. Смотреть картинку Что такое чистый водород. Картинка про Что такое чистый водород. Фото Что такое чистый водород

Меры предосторожности

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водород пожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Считается, что взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75 (74) % по объёму. Такие цифры фигурируют сейчас в большинстве справочников, и ими вполне можно пользоваться для ориентировочных оценок. Однако следует иметь в виду, что более поздние исследования (примерно конец 80-х) выявили, что водород в больших объёмах может быть взрывоопасен и при меньшей концентрации. Чем больше объём, тем меньшая концентрация водорода опасна.

Источник этой широко растиражированной ошибки в том, что взрывоопасность исследовалась в лабораториях на малых объёмах. Поскольку реакция водорода с кислородом — это цепная химическая реакция, которая проходит по свободнорадикальному механизму, «гибель» свободных радикалов на стенках (или, скажем, поверхности пылинок) критична для продолжения цепочки. В случаях, когда возможно создание «пограничных» концентраций в больших объёмах (помещения, ангары, цеха), следует иметь в виду, что реально взрывоопасная концентрация может отличаться от 4 % как в большую, так и в меньшую стороны.

Применение

Водород сегодня применяется во многих областях. Структура мирового потребления водорода представлена в следующей таблице

Структура мирового потребления водорода (2007) (англ.)

ПрименениеДоля
Производство аммиака54 %
Нефтепереработка и химическая промышленность35 %
Производство электроники6 %
Металлургия и стекольная промышленность3 %
Пищевая промышленность2 %

Химическая промышленность

Химическая промышленность — это крупнейший потребитель водорода. Около 50 % мирового выпуска водорода идёт на производство аммиака. Ещё около 8 % используется для производства метанола. Из аммиака производят пластмассы, удобрения, взрывчатые вещества и прочее. Метанол является основой для производства некоторых пластмасс.

Нефтеперерабатывающая промышленность

В нефтепереработке водород используется в процессах гидрокрекинга и гидроочистки, способствуя увеличению глубины переработки сырой нефти и повышению качества конечных продуктов. Для этих целей используется порядка 37 % всего производимого в мире водорода.

Пищевая и косметическая промышленность

При производстве саломаса (твёрдый жир, производимый из растительных масел). Саломас является основой для производства маргарина, косметических средств, мыла. Водород зарегистрирован в качестве пищевой добавки E949.

Химические лаборатории

Водород используется в химических лабораториях в качестве газа-носителя в газовой хроматографии. Такие лаборатории есть на многих предприятиях в пищевой, парфюмерной, металлургической и химической промышленности. Несмотря на горючесть водорода, его использование в такой роли считается достаточно безопасным, поскольку водород используется в незначительных количествах. Эффективность водорода как газа-носителя при этом лучше, чем у гелия, при существенно более низкой стоимости.

Авиационная промышленность

В настоящее время водород в авиации не используется. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько катастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Метеорология

Водород используется в метеорологии для заполнения оболочек метеозондов. Водород в этом качестве имеет преимущество перед гелием, так как он дешевле. Ещё более существенно, что водород вырабатывается прямо на метеостанции с помощью простого химического генератора или с помощью электролиза воды. Гелий же должен доставляться на метеостанцию в баллонах, что может быть затруднительно для удалённых мест.

Топливо

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

Электроэнергетика

Водород применяется для охлаждения мощных электрических генераторов.

Прочее

Атомарный водород используется для атомно-водородной сварки. Высокая теплопроводность водорода используется для заполнения сфер гирокомпасов и стеклянных колб филаментных LED-лампочек.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *