как известно наша планета земля является большим магнитом какой магнитный полюс находится вблизи
Как известно наша планета земля является большим магнитом какой магнитный полюс находится вблизи
При резком торможении происходит сильное нагревание покрышек колёс и тормозных колодок автомобиля. Как можно объяснить это явление? Какие превращения энергии при этом происходят?
Покрышки автомобиля и тормозные колодки нагреваются за счёт работы силы трения, которая совершается при проскальзывании. При этом механическая энергия переходит во внутреннюю энергию.
Критерии оценивания выполнения задания | Баллы |
---|---|
Даны полностью верные ответы на оба вопроса задачи. | 2 |
В решении имеется один или несколько из следующих недостатков. Названо только правильное превращение энергии при данном явлении без его объяснения. В решении имеется неточность в объяснении явления. | 1 |
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1 или 2 балла. | 0 |
Максимальный балл | 2 |
Кусок свинца, находившийся при температуре +27,5 °C, начали нагревать, подводя к нему постоянную тепловую мощность. Через 39 секунд после начала нагревания свинец достиг температуры плавления +327,5 °C. Через сколько секунд после этого момента кусок свинца расплавится? Потери теплоты отсутствуют. (Удельная теплоёмкость свинца — 130 Дж/(кг · °С), удельная теплота плавления свинца — 25 кДж/кг.) Ответ дайте в секундах.
Зная количество теплоты, необходимое для нагревания свинца, и время, можем найти мощность нагревателя
Чтобы расплавить свинец, необходимо количество теплоты Таким образом, при том же нагревателе, кусок свинца расплавится через
Используя данные рисунка, определите показание идеального амперметра А. Ответ дайте в амперах.
Амперметр показывает силу тока I цепи. Он идеальный, поэтому не имеет собственного сопротивления. Следовательно, напряжение на всей цепи U = 6 В складывается из напряжения на левом резисторе U1 с сопротивлением R1 = 2 Ом и напряжения на параллельном участке U1 с сопротивлением Rсум. Запишем закон Ома для всей цепи:
и выразим отсюда силу тока:
Рассмотрим параллельный участок цепи: верхняя, средняя и нижняя его части имеют одинаковое сопротивление R = 3 Ом. Чтобы найти сопротивление параллельного участка, состоящего из n одинаковых резисторов, нужно разделить сопротивление одного такого резистора на их число. В данном случае
Теперь находим силу тока:
За 0,5 мин работы в электрической лампе была израсходована энергия 900 Дж. Известно, что через лампу протекает ток силой 0,5 А. Найдите напряжение, под которым работает лампа. Ответ дайте в вольтах.
Расход энергии E в единицу времени t есть мощность W лампы:
Электрическая мощность также зависит от силы тока I и напряжения U как
Объединив два выражения, получим
откуда выражается U:
Переводим минуты в секунды: 0,5 мин = 30 сек и подставляем исходные данные в формулу:
Кузнецу нужно разогреть кусок стали массой 0,5 кг до температуры плавления при температуре воздуха 20 °C. Какое количество теплоты ему потребуется? Ответ дайте в килоджоулях.
Как известно, наша планета Земля является большим магнитом. Какой магнитный полюс находится вблизи Южного географического полюса Земли? Объясните свой ответ.
Известно, что Земля обладает магнитным полем. Географические полюса Земли люди определяют с помощью компаса — маленькой магнитной стрелки. Известно, что такая стрелка располагается так, что разноимённые полюса магнитов притягиваются. Так как магнитная стрелка компаса указывает на северный географический полюс Земли, то вблизи него находится южный магнитный полюс Земли. Тогда вблизи южного географического полюса будет находится северный магнитный полюс.
Ответ: северный магнитный полюс.
Критерии оценивания выполнения задания | Баллы |
---|---|
Приведён полностью правильный ответ на вопрос и дано правильное объяснение. | 2 |
В решении имеется один или несколько из следующих недостатков. Приведён полный только правильный ответ на вопрос без объяснения. Приведено правильное объяснение, но правильный ответ на вопрос дан лишь частично. В решении дан правильный ответ на вопрос, но в объяснении имеются неточности | 1 |
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1 или 2 балла. | 0 |
Максимальный балл | 2 |
1) Какую массу имеет деревянная ручка и каменное тесло? Ответ дайте с точностью до десятых для массы ручки и с точностью до целых для массы тесла.
2) Чему равна плотность камня? Ответ дайте с точностью до целых.
2. 2) По условию ручка занимает половину объёма. Значит, объём камня такой же. Плотность камня найдём по формуле
Известно, что «лошадиная сила» (л. с.) равна мощности 75 кгс · м/с ≈ 735 Вт, а средний человек при длительной работе развивает мощность около 0,16 л. с. и кратковременно может превышать это ограничение. Человек, стараясь после отключения электричества в сети осветить своё жилище, используя электрогенератор с механическим приводом с КПД η = 65%, вращает ротор генератора через редуктор за ручку, находящуюся на расстоянии R = 0,35 м от оси, со скоростью n = 30 об/мин, прикладывая к ручке силу F = 90 Н.
Сможет ли он долго поддерживать горение лампочки накаливания мощностью P = 60 Вт, и не перегорит ли она от перенапряжения (лампочка рассчитана на номинальное напряжение 220 В, но не более 235 В, а напряжение генератора прямо пропорционально скорости вращения ротора)?
КПД генератора с механическим приводом равен отношению его электрической мощности к механической мощности, развиваемой человеком:
Механическая мощность, развиваемая человеком, в условиях задачи равна
а электрическая мощность генератора что достаточно для питания лампочки мощностью 60 Вт. Напряжение питания будет при этом повышено до
так что лампочка не перегорит.
Средняя механическая мощность человека при длительной работе равна по условию 0,16 л. с. ≈ 117,6 Вт, так что человек сможет долго освещать своё жилище, не перенапрягаясь.
Школьника попросили определить массу одной монетки и выдали для этого 25 одинаковых монет, рычажные весы и набор гирек. Проблема оказалась в том, что самая лёгкая гирька в наборе имела массу 10 г, а монеты были достаточно лёгкими. Школьник провёл несколько опытов и выяснил, что если на одну чашу весов положить 3 монеты, то они перевешивают гирю массой 10 г, но легче, чем гиря массой 20 г. Если положить на чашу весов 15 монет, то они легче, чем гири массой 70 г, но тяжелее, чем гири массой 60 г. А если положить 25 монет, то они тяжелее 110 г, но легче 120 г.
1) По результатам каждого измерения определите массу монетки и оцените погрешность определения массы монетки.
2) В каком из трёх экспериментов точность определения массы монеты будет наибольшей?
3) Пользуясь результатами того из трёх измерений, которое позволяет определить массу монетки с наибольшей точностью, найдите объём одной монетки и оцените его погрешность. Считайте, что плотность монетки равна
Напишите полное решение этой задачи.
1) Из первого измерения следует, что то есть
тогда
г.
Из второго измерения следует, что то есть
тогда
г.
Из третьего измерения следует, что то есть
тогда
г.
2) Для повышения точности эксперимента нужно взвешивать как можно большее количество монет, то есть в третьем опыте точность будет выше.
Критерии оценивания выполнения задания | Баллы |
---|---|
Приведено полное решение, включающее следующие элементы: I) записаны положения теории, физические законы, закономерности, формулы и т. п., применение которых необходимо для решения задачи выбранным способом; II) проведены нужные рассуждения, верно осуществлена работа с графиками, схемами, таблицами (при необходимости), сделаны необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями; часть промежуточных вычислений может быть проведена «в уме»; задача может решаться как в общем виде, так и путём проведения вычислений непосредственно с заданными в условии численными значениями); Земля как магнит: Геомагнитное полеВ 1905 году Эйнштейн назвал одной из пяти главных загадок тогдашней физики причину земного магнетизма. В том же 1905 году французский геофизик Бернар Брюнес провел в южном департаменте Канталь замеры магнетизма лавовых отложений эпохи плейстоцена. Вектор намагниченности этих пород составлял почти 180 градусов с вектором планетарного магнитного поля (его соотечественник П. Давид получил аналогичные результаты даже годом раньше). Брюнес пришел к заключению, что три четверти миллиона лет назад во время излияния лавы направление геомагнитных силовых линий было противоположным современному. Так был обнаружен эффект инверсии (обращения полярности) магнитного поля Земли. Во второй половине 1920-х годов выводы Брюнеса подтвердили П. Л. Меркантон и Монотори Матуяма, но эти идеи получили признание лишь к середине столетия. Сейчас мы знаем, что геомагнитное поле существует не менее 3,5 млрд лет и за это время магнитные полюса тысячи раз обменивались местами (Брюнес и Матуяма исследовали последнюю по времени инверсию, которая сейчас носит их имена). Иногда геомагнитное поле сохраняет ориентацию в течение десятков миллионов лет, а иногда — не более пятисот веков. Сам процесс инверсии обычно занимает несколько тысячелетий, и по его завершении напряженность поля, как правило, не возвращается к прежней величине, а изменяется на несколько процентов. Механизм геомагнитной инверсии не вполне ясен и поныне, а уж сто лет назад он вообще не допускал разумного объяснения. Поэтому открытия Брюнеса и Давида только подкрепили эйнштейновскую оценку — действительно, земной магнетизм был крайне загадочен и непонятен. А ведь к тому времени его исследовали свыше трехсот лет, а в XIX веке им занимались такие звезды европейской науки, как великий путешественник Александр фон Гумбольдт, гениальный математик Карл Фридрих Гаусс и блестящий физик-экспериментатор Вильгельм Вебер. Так что Эйнштейн воистину глядел в корень. Как вы думаете, сколько у нашей планеты магнитных полюсов? Почти все скажут, что два — в Арктике и Антарктике. На самом деле ответ зависит от определения понятия полюса. Географическими полюсами считают точки пересечения земной оси с поверхностью планеты. Поскольку Земля вращается как твердое тело, таких точек всего две и ничего другого придумать нельзя. А вот с магнитными полюсами дело обстоит много сложнее. Например, полюсом можно счесть небольшую область (в идеале опять-таки точку), где магнитные силовые линии перпендикулярны земной поверхности. Однако любой магнитометр регистрирует не только планетарное магнитное поле, но и поля местных пород, электрических токов ионосферы, частиц солнечного ветра и прочих дополнительных источников магнетизма (причем их средняя доля не так уж мала, порядка нескольких процентов). Чем точнее прибор, тем лучше он это делает — и потому все больше затрудняет выделение истинного геомагнитного поля (его называют главным), источник которого находится в земных глубинах. Поэтому координаты полюса, определенные с помощью прямого измерения, не отличаются стабильностью даже в течение короткого отрезка времени. Можно действовать иначе и установить положение полюса на основании тех или иных моделей земного магнетизма. В первом приближении нашу планету можно считать геоцентрическим магнитным диполем, ось которого проходит через ее центр. В настоящее время угол между нею и земной осью составляет 10 градусов (несколько десятилетий назад он был больше 11 градусов). При более точном моделировании выясняется, что дипольная ось смещена относительно центра Земли в направлении северо-западной части Тихого океана примерно на 540 км (это эксцентрический диполь). Есть и другие определения. Но это еще не все. Земное магнитное поле реально не обладает дипольной симметрией и потому имеет множественные полюса, причем в огромном количестве. Если считать Землю магнитным четырехполюсником, квадруполем, придется ввести еще два полюса — в Малайзии и в южной части Атлантического океана. Октупольная модель задает восьмерку полюсов и т. д. Современные наиболее продвинутые модели земного магнетизма оперируют аж 168 полюсами. Стоит отметить, что в ходе инверсии временно исчезает лишь дипольная компонента геомагнитного поля, а прочие изменяются много слабее. Полюса наоборотМногие знают, что общепринятые названия полюсов верны с точностью до наоборот. В Арктике расположен полюс, на который указывает северный конец магнитной стрелки, — следовательно, его стоило бы считать южным (одноименные полюса отталкиваются, разноименные притягиваются!). Аналогично, северный магнитный полюс базируется в высоких широтах Южного полушария. Тем не менее по традиции мы именуем полюса в соответствии с географией. Физики давно условились, что силовые линии выходят из северного полюса любого магнита и входят в южный. Отсюда следует, что линии земного магнетизма покидают южный геомагнитный полюс и стягиваются к северному. Такова конвенция, и нарушать ее не стоит (самое время припомнить печальный опыт Паниковского!). Магнитный полюс, как его ни определяй, не стоит на месте. Северный полюс геоцентрического диполя в 2000 году имел координаты 79,5 N и 71,6 W, а в 2010-м — 80,0 N и 72,0 W. Истинный Северный полюс (тот, который выявляют физические замеры) с 2000 года сместился с 81,0 N и 109,7 W к 85,2 N и 127,1 W. В течение почти всего ХХ века он делал не более 10 км в год, но после 1980 года вдруг начал двигаться гораздо быстрее. В начале 1990-х годов его скорость превысила 15 км в год и продолжает расти. Как рассказал «Популярной механике» бывший руководитель геомагнитной лаборатории канадской Службы геологических исследований Лоуренс Ньюитт, сейчас истинный полюс мигрирует на северо-запад, перемещаясь ежегодно на 50 км. Если вектор его движения не изменится в течение нескольких десятилетий, то к середине XXI столетия он окажется в Сибири. Согласно реконструкции, выполненной несколько лет назад тем же Ньюиттом, в XVII и XVIII веках северный магнитный полюс преимущественно смещался на юго-восток и лишь примерно в 1860 году повернул на северо-запад. Истинный южный магнитный полюс последние 300 лет движется в эту же сторону, причем его среднегодичное смещение не превышает 10–15 км. Откуда вообще у Земли магнитное поле? Одно из возможных объяснений просто бросается в глаза. Земля обладает внутренним твердым железо-никелевым ядром, радиус которого составляет 1220 км. Поскольку эти металлы ферромагнитны, почему бы не предположить, что внутреннее ядро имеет статическую намагниченность, которая и обеспечивает существование геомагнитного поля? Мультиполярность земного магнетизма можно списать на несимметричность распределения магнитных доменов внутри ядра. Миграцию полюсов и инверсии геомагнитного поля объяснить сложнее, но, наверное, попытаться можно. Однако из этого ничего не получается. Все ферромагнетики остаются таковыми (то есть сохраняют самопроизвольную намагниченность) лишь ниже определенной температуры — точки Кюри. Для железа она равна 768°C (у никеля много ниже), а температура внутреннего ядра Земли значительно превышает 5000 градусов. Поэтому с гипотезой статического геомагнетизма приходится расстаться. Однако не исключено, что в космосе имеются остывшие планеты с ферромагнитными ядрами. Рассмотрим другую возможность. Наша планета также обладает жидким внешним ядром толщиной приблизительно в 2300 км. Оно состоит из расплава железа и никеля с примесью более легких элементов (серы, углерода, кислорода и, возможно, радиоактивного калия — в точности не знает никто). Температура нижней части внешнего ядра почти совпадает с температурой внутреннего ядра, а в верхней зоне на границе с мантией понижается до 4400°C. Поэтому вполне естественно предположить, что благодаря вращению Земли там формируются круговые течения, которые могут оказаться причиной возникновения земного магнетизма. Конвективное динамо
«Чтобы объяснить возникновение полоидального поля, необходимо принять во внимание вертикальные потоки вещества ядра. Они образуются благодаря конвекции: нагретый железно-никелевый расплав всплывает из нижней части ядра по направлению к мантии. Эти струи закручиваются силой Кориолиса подобно воздушным потокам циклонов. В Северном полушарии восходящие потоки вращаются по часовой стрелке, а в Южном — против, — объясняет профессор Калифорнийского университета Гэри Глатцмайер. — При подходе к мантии вещество ядра остывает и начинает обратное движение вглубь. Магнитные поля восходящих и нисходящих потоков гасят друг друга, и поэтому по вертикали поле не устанавливается. А вот в верхней части конвекционной струи, там, где она образует петлю и недолго движется по горизонтали, ситуация иная. В Северном полушарии силовые линии, которые до конвекционного восхождения смотрели на запад, поворачиваются по часовой стрелке на 90 градусов и ориентируются на север. В Южном полушарии они поворачиваются с востока против часовой стрелки и тоже направляются на север. В результате в обоих полушариях генерируется магнитное поле, указывающее с юга на север. Хоть это отнюдь не единственное возможное объяснение возникновения полоидального поля, его считают самым вероятным». Именно такую схему ученые-геофизики обсуждали лет 80 назад. Они считали, что потоки проводящей жидкости внешнего ядра за счет своей кинетической энергии порождают электрические токи, охватывающие земную ось. Эти токи генерируют магнитное поле преимущественно дипольного типа, силовые линии которого на поверхности Земли вытянуты вдоль меридианов (такое поле называется полоидальным). Этот механизм вызывает ассоциацию с работой динамо-машины, отсюда и произошло его название. Описанная схема красива и наглядна, но, к сожалению, ошибочна. Она основана на предположении, что движение вещества внешнего ядра симметрично относительно земной оси. Однако в 1933 году английский математик Томас Каулинг доказал теорему, согласно которой никакие осесимметричные потоки не способны обеспечить существование долговременного геомагнитного поля. Даже если оно и появится, то век его окажется недолог, вдесятки тысяч раз меньше возраста нашей планеты. Нужна модель посложнее. «Мы не знаем точно, когда возник земной магнетизм, однако это могло произойти вскоре после формирования мантии и внешнего ядра, — говорит один из крупнейших специалистов по планетарному магнетизму, профессор Калифорнийского технологического института Дэвид Стивенсон. — Для включения геодинамо требуется внешнее затравочное поле, причем не обязательно мощное. Эту роль, к примеру, могло взять на себя магнитное поле Солнца или поля токов, порожденных в ядре за счет термоэлектрического эффекта. В конечном счете это не слишком важно, источников магнетизма хватало. При наличии такого поля и кругового движения потоков проводящей жидкости запуск внутрипланетной динамомашины становился просто неизбежным». Магнитная защитаМониторинг земного магнетизма производят с помощью обширной сети геомагнитных обсерваторий, создание которой началось еще в 1830-х годах. Для этих же целей используют корабельные, авиационные и космические приборы (к примеру, скалярный и векторный магнитометры датского спутника «Эрстед», работающие с 1999 года). Напряженность геомагнитного поля варьирует приблизительно от 20 000 нанотесла вблизи побережья Бразилии до 65 000 нанотесла в районе южного магнитного полюса. С 1800 года его дипольная компонента сократилась почти на 13% (а с середины XVI века — на 20%), в то время как квадрупольная несколько возросла. Палеомагнитные исследования показывают, что в течение нескольких тысячелетий перед началом нашей эры напряженность геомагнитного поля упорно лезла вверх, а потом начала снижаться. Тем не менее нынешний планетарный дипольный момент значительно превышает свое среднее значение за последние полтораста миллионов лет (в 2010 году были опубликованы результаты палеомагнитных измерений, свидетельствующие, что 3,5 млрд лет назад земное магнитное поле было вдвое слабее нынешнего). Это означает, что вся история человеческих обществ от возникновения первых государств до нашего времени пришлась на локальный максимум земного магнитного поля. Интересно задуматься над тем, повлияло ли это на прогресс цивилизации. Такое предположение перестает казаться фантастическим, если учесть, что магнитное поле защищает биосферу от космического излучения. И вот еще одно обстоятельство, которое стоит отметить. В юности и даже отрочестве нашей планеты все вещество ее ядра пребывало в жидкой фазе. Твердое внутреннее ядро сформировалось сравнительно недавно, возможно, всего лишь миллиард лет назад. Когда это произошло, конвекционные потоки стали более упорядоченными, что привело к более устойчивой работе геодинамо. Из-за этого геомагнитное поле выиграло в величине и стабильности. Можно предположить, что это обстоятельство благоприятно сказалось на эволюции живых организмов. В частности, усиление геомагнетизма улучшило защиту биосферы от космических излучений и тем самым облегчило выход жизни из океана на сушу. Вот общепринятое объяснение такого запуска. Пусть для простоты затравочное поле почти параллельно оси вращения Земли (на самом деле достаточно, если оно имеет ненулевую компоненту в этом направлении, что практически неизбежно). Скорость вращения вещества внешнего ядра убывает по мере уменьшения глубины, причем из-за его высокой электропроводности силовые линии магнитного поля движутся вместе с ним — как говорят физики, поле «вморожено» в среду. Поэтому силовые линии затравочного поля будут изгибаться, уходя вперед на больших глубинах и отставая на меньших. В конце концов они вытянутся и деформируются настолько, что дадут начало тороидальному полю, круговым магнитным петлям, охватывающим земную ось и направленным в противоположные стороны в северном и южном полушариях. Этот механизм называется w-эффектом. По словам профессора Стивенсона, очень важно понимать, что тороидальное поле внешнего ядра возникло благодаря полоидальному затравочному полю и, в свою очередь, породило новое полоидальное поле, наблюдаемое у земной поверхности: «Оба типа полей планетарного геодинамо взаимосвязаны и не могут существовать друг без друга». 15 лет назад Гэри Глатцмайер вместе с Полом Робертсом опубликовал очень красивую компьютерную модель геомагнитного поля: «В принципе для объяснения геомагнетизма давно имелся адекватный математический аппарат — уравнения магнитной гидродинамики плюс уравнения, описывающие силу тяготения и тепловые потоки внутри земного ядра. Модели, основанные на этих уравнениях, в первозданном виде очень сложны, однако их можно упростить и адаптировать для компьютерных вычислений. Именно это и проделали мы с Робертсом. Прогон на суперкомпьютере позволил построить самосогласованное описание долговременной эволюции скорости, температуры и давления потоков вещества внешнего ядра и связанной с ними эволюции магнитных полей. Мы также выяснили, что если проигрывать симуляцию на временных промежутках порядка десятков и сотен тысяч лет, то с неизбежностью возникают инверсии геомагнитного поля. Так что в этом отношении наша модель неплохо передает магнитную историю планеты. Однако есть затруднение, которое пока еще не удалось устранить. Параметры вещества внешнего ядра, которые закладывают в подобные модели, все еще слишком далеки от реальных условий. Например, нам пришлось принять, что его вязкость очень велика, иначе не хватит ресурсов самых мощных суперкомпьютеров. На самом деле это не так, есть все основания полагать, что она почти совпадает с вязкостью воды. Наши нынешние модели бессильны учесть и турбулентность, которая несомненно имеет место. Но компьютеры с каждым годом набирают силу, и лет через десять появятся гораздо более реалистичные симуляции». «Работа геодинамо неизбежно связана с хаотическими изменениями потоков железо-никелевого расплава, которые оборачиваются флуктуациями магнитных полей,– добавляет профессор Стивенсон. — Инверсии земного магнетизма — это просто сильнейшие из возможных флуктуаций. Поскольку они стохастичны по своей природе, вряд ли их можно предсказывать заранее — во всяком случае мы этого не умеем».
|