к какому виду волн относятся звуковые волны

Тест по физике Источники звука 9 класс

Тест по физике Источники звука Звуковые колебания для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.

1. Обязательными условиями возбуждения звуковой волны являются

А) наличие источника колебаний
Б) наличие упругой среды
В) наличие газовой среды

1) А и Б
2) Б и В
3) А и В
4) А, Б и В

2. К какому виду волн относятся звуковые волны?

1) К поперечным механическим
2) К продольным механическим
3) К электромагнитным
4) Среди ответов нет правильного

3. Какова примерно самая низкая частота звука, слышимого человеком?

1) 2 Гц
2) 20 Гц
3) 2000 Гц
4) 20 000 Гц

4. Как называются механические колебания, частота которых превышает 20 000 Гц?

1) Звуковые
2) Инфразвуковые
3) Ультразвуковые
4) Среди ответов нет правильного

5. В воздухе распространяется звуковая волна. Расстояние от области повышенного давления до ближайшей области по­ниженного давления 10 см, расстояние между ближайшими областями повышенного давления 20 см, между ближайши­ми областями пониженного давления 20 см. Какова длина звуковой волны?

1) 10 см
2) 20 см
3) 30 см
4) 40 см

6. Человек услышал звук грома через 10 с после вспышки молнии. Считая, что скорость звука в воздухе 343 м/с, опре­делите, на каком расстоянии от человека ударила молния.

1) 3,43 м
2) 34,3 м
3) 1715 м
4) 3430 м

7. Камертон излучает звуковую волну длиной 0,5 м. Скорость звука 340 м/с. Какова частота колебаний камертона?

1) 17 Гц
2) 680 Гц
3) 170 Гц
4) 3400 Гц

8. Как изменится длина звуковой волны при увеличении частоты колебаний ее источника в 2 раза?

1) Увеличится в 2 раза
2) Уменьшится в 2 раза
3) Не изменится
4) Уменьшится в 4 раза

9. Человеческое ухо может воспринимать звуки частотой от 20 Гц до 20 000 Гц. Какой диапазон длин волн соответству­ет интервалу слышимости звуковых колебаний? Скорость звука в воздухе примите равной 340 м/с.

1) От 20 м до 20 000 м
2) От 6800 м до 6 800 000 м
3) От 0,06 м до 58,8 м
4) От 0,017 м до 17 м

10. Верхняя граница частоты колебаний, воспринимаемая ухом человека, составляет для детей 22 кГц, а для пожилых лю­дей 10 кГц. В воздухе скорость звука равна 340 м/с. Звук с длиной волны 17 мм

1) услышит только ребенок
2) услышит только пожилой человек
3) услышит и ребенок, и пожилой человек
4) не услышит ни ребенок, ни пожилой человек

Ответы на тест по физике Источники звука Звуковые колебания
1-1
2-2
3-2
4-3
5-2
6-4
7-2
8-2
9-4
10-1

Источник

Звуковые волны

Звуковые волны или звук – это колебания частиц, распространяемые волнообразно в какой-либо среде – газообразной, жидкой или твёрдой, – которые воспринимаются органами слуха животных.

Когда мы изучаем свет, то убеждаемся не только в том, что он существует вне нас, но сверх того еще и в том, что нам необходимо иметь глаза для восприятия света, иначе мы и не подозревали бы о нем. Всё вокруг нас погружается в темноту, когда мы закрываем глаза. Точно так же для нас не существовало бы мира звуков, если бы у нас не было органа слуха, который воспринимает их.

Итак, мы называем звуком то, что мы чувствуем нашим слуховым аппаратом. Но явления внешнего мира для нас имеют характер звуковых только с того момента, когда они дошли до наших ушей. Закрыв уши пальцами, мы не услышим разговора, хотя он и продолжается около нас.

Из этого следует, что как бы ни были грандиозны звуковые явления, происходящие на Солнце и Луне, они не могут произвести такого шума, который мог бы быть услышан у нас на Земле, потому что за пределами нашей атмосферы, между Землей и небесными телами, нет обычной материи.

Источники звуковых волн

Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.

Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.

Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.

Распространение звуковых волн

Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.

Скорость звука

Скорость света одинакова при всех условиях, насколько это можно было изучить. А скорость звука изменяется в значительной степени с изменением условий, при которых он распространяется в воздухе. Большое счастье для музыкального искусства заключается в том, что скорость звука изменяется только в незначительной степени с изменением высоты его или силы.

Было бы очень затруднительно слушать издали музыку, если бы звуки различных инструментов оркестра доходили до нашего слуха в разное время, в то время как композитор имел в виду, что они будут слышаться одновременно. Или, если бы мотив, разыгрываемый одной частью оркестра, доходил до нашего слуха раньше того, что играет другая часть оркестра, или позже.

1. Скорость звука в воздухе

Обычная скорость звука в воздухе считается около 331 метра (То есть около трети километра) в секунду. Когда температура воздуха поднимается, он становится более упругим и тогда прохождение звука через него совершается быстрее.

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Скорость звука увеличивается с повышением температуры воздуха, если плотность его остается той же самой.

Если мы примем во внимание зависимость скорости звука от упругости проводящей его среды, то нам будет понятно, почему звук проходит значительно быстрее в жидкостях, чем в газах, и еще быстрее в твердых телах.

2. Скорость звуковых волн в твёрдых телах

Звуковые волны распространяются в твёрдых телах быстрее, чем в воздухе. Железо, когда оно в твердом состоянии, обладает большею упругостью, чем воздух, и звук проходит в нем почти в семнадцать раз быстрее, чем в воздухе

Нельзя смешивать скорость распространения звука в воздухе или в какой-либо другой среде с высотой тона. Она у музыкального звука зависит от числа колебаний в секунду, и чем их больше, тем выше тон.

Звук, как мы сказали, проходя через железо, достигает нашего уха в семнадцать раз быстрее, чем когда он проходит через воздух; высота же его тона остается той же самой в обоих случаях, потому что число колебаний в секунду остается одно и то же, хотя звук через железо проходит значительно быстрее.

3. Скорость звука в разных средах

Сила звука

Когда мы начнем исследовать силу звука на разных расстояниях, то найдем, что первый закон, относительно его, тот же, что и для света. И насколько нам известно, этот закон верен не только относительно волнообразных движений, но и такого явления, как тяготение.

На точном научном языке закон о силе звука излагается так:

Сила звука изменяется обратно пропорционально квадрату расстояния от его источника

Таким образом можно коротко и ясно выразить, например, ту мысль, что если мы удаляемся от источника звука на расстояние, которое в три раза больше прежнего, то сила звука уменьшится при этом не в три, а в девять раз: девять есть квадрат трех. Квадратом числа называется число, полученное от перемножения его на самого себя.

Когда этот закон применяется к силе света или тяготения, то нам не приходится считаться с какими-либо условиями, которые могут повлиять на них. Но если речь идёт о звуке, то дело обстоит несколько иначе. На звук влияет плотность той среды, в которой он проходит; в морозную ночь воздух очень плотен, почему нам и дышится тогда легче, звук же будет в это время слышен сильнее. С другой стороны, звук ружейного выстрела высоко в горах ослабляется, потому что воздух там редок. Это явление напоминает нам опыт со звонком под колпаком воздушного насоса.

Отражение звука

Когда мы наблюдаем, как волны моря или озера ударяют в крутой берег, мы видим, что они отражаются от него и отскакивают назад. Если поверхность берега ровная и вертикальная, то мы видим, что волны отражаются от нее точно так же, как мяч от стены. Если звук есть действительно волнообразное движение, то мы всегда можем ожидать, что и он будет так же отражаться, как водяные волны, и нам часто приходится убеждаться в этом.

Всякие движущиеся волны могут отражаться от преград на их пути; это совершается как при свете, так и при морских волнах. Есть законы отражения, которые одинаково приложимы к этим различным явлениям.

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Природа грома

Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.

Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.

Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Волны Рэлея

Если мы наполним резиновый шар или выпуклый диск углекислым газом, то заметим, что он действует на звук точно так, как зажигательное стекло на световые лучи. Звуковые волны отклоняются газом, находящимся в шаре, так что они все собираются в одном пункте, находящемся по другую сторону шара точно так, как лучи солнца могут быть собраны на кусок бумаги в одну точку зажигательным стеклом.

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Это видно из хорошо известного опыта, произведенного замечательным английским ученым, лордом Рэлеем. Опыт этот заключается в том, что нас ставят против часов на таком расстоянии, чтобы не слышать их тиканья. Если после этого гуттаперчевый шар, наполненный углекислым газом, будет помещен между нами и часами, то, находясь на том же самом расстоянии, мы услышим часы. Это происходит вследствие того, что углекислый газ преломляет звуковые волны и фокусирует их в одной точке.

Источник

Физика. 11 класс

§ 6. Звуковые волны

Звуковые волны (звук) окружают человека с первых дней его жизни. Звуки позволяют людям общаться между собой, выражать эмоции, наслаждаться музыкальными шедеврами. Как это происходит? Каковы основные свойства звуковых волн?

Упругие волны, вызывающие у человека слуховые ощущения, называются звуковыми волнами или просто звуком. Человеческое ухо воспринимает в виде звуковых ощущений колебания от 16 до 20 000 Гц.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.
Звуковые волны классифицируются по частоте следующим образом (рис. 41):

инфразвук (ν слышимый человеком звук (16 Гц ультразвук ( ); гиперзвук ( ).

Звуки (звуковые волны) приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся музыкой, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и можем безошибочно отличить пение птиц от шума городской улицы.
к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Что представляет собой звук и каким образом он возникает?
Рассмотрим в качестве источ­ни­ка звука барабан (рис. 42). Де­фор­мированная в результате удара мем­брана барабана будет совершать колебания с некоторой частотой. В результате этого мембрана создает попеременно сжатие и разрежение в прилегающей к ней области воздуха, и образуется продольная волна, которая распространяется в воздухе с течением времени.

Наглядную информацию о звуковой волне в некоторый момент времени дает график зависимости плотности воздуха от координаты (рис. 43). Горбы на этом графике соответствуют сжатию, а впадины — разряжению воздуха. В процессе распространения звуковой волны с течением времени изменяются такие характе­ристики среды, как плотность и давление (см. рис. 43).
Для распространения звуковых волн необходима среда с упругими свойствами. Они хорошо распространяются в упругих средах, таких как газ, жидкость, металлы, стекло, кристаллические материалы. Однако звуковые волны быстро затухают в пористых материалах (поролон, вой­лок, вата). Такие материалы используют для звукоизоляции. Лучшим изолятором звука является вакуум (пустота), так как результаты экспериментов показывают, что звуковые волны в пустоте (вакууме) не распространяются.
Основными физическими характеристиками звука являются интенсивность и спектральный состав (спектр).

В соответствии с определением единицей интенсивности в СИ является ватт на метр в квадрате ( ).

Диаграмма восприятия звука ухом человека приведена на рисунке 43-1.

Интенсивность звука, улавливаемого ухом человека, лежит в огромных пределах: от (порог слышимости) до (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль. Звуки еще большей интенсивности могут привести к травме.

В науке и технике уровни интенсивности звука определяют обычно, используя шкалу, единицей которой является бел (Б) или ее дольная единица — децибел (дБ) (одна десятая бела). Уровень интенсивности самого слабого звука, который воспринимает наше ухо, соответствует 1 бел (1Б). Она названа в честь изобретателя телефона А. Г. Белла.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на 10 дБ. Вследствие этого, звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ (см. рис. 43-1).

Поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Таким образом, для возникновения звуковых ощущений необходимо:

• наличие источника звука;
• наличие упругой среды между источником звука и ухом. При этом частота колебаний источника звука должна находиться в пределах 16—20 000 Гц;
• мощность звуковых волн должна быть достаточной для того, чтобы вызвать ощущение звука.
Еще одной основной характеристикой звука является его спектр. Спектром называется набор частот звуков различных колебаний, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.
Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.
По типу спектра звуки разделяются на музыкальные тона и шумы.
Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. Спектр гармонического колебания представляет собой одну вертикальную линию (рис. 44).
Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т. п.) — представляет собой нало­жение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр) (рис. 45).

Шумы по частотной характеристике разделяются на низкочастотные

Длительное воздействие шумов на человека приводит к повреждению центральной нервной системы, повышению кровяного и внутричерепного давления, нарушению нормальной работы сердца, головокружению. Вредное воздействие сильных шумов на человека было замечено давно (рис. 45-1).

В Китае еще 2000 лет назад в качестве наказания заключенные подвергались непрерывному воздействию звуков флейт, барабанов и крикунов, пока не падали замертво. При мощности шума 3 кВт и частоте 800 Гц нарушается способность глаза к фокусировке. Мощность шума 5—8 кВт дезорганизует работу скелетной мускулатуры, вызывает паралич, потерю памяти. Мощность шума около 200 кВт приводит к смерти. Поэтому в больших городах запрещено использование резких и громких сигналов. Значительно снижают шумы деревья, кустарники, которые их поглощают. Поэтому вдоль дорог с интенсивным автомобильным движением необходимы зеленые насаждения. Тишина значительно повышает остроту слуха.

Для определения уровня шума используют шумомеры (рис. 45-2).

Физическим характеристикам звука соответствуют его субъективные характеристики, связанные с его восприятием ухом человека. Это обусловлено тем, что восприятие звука — процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей по-разному, в зависимости от чувствительности органов слуха.

Основными физиологическими характеристиками звука являются громкость, высота и тембр.
Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 до 5000 Гц.

Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.

Для музыкального звука (созвучия) основной тон соответствует наименьшей частоте (рис. 46). Все остальные тоны называют обертонами.

Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота.
По тембру мы легко отличаем звуки скрипки и рояля, органа и флейты, голоса людей и т.д.

Таблица 3. Частота ν колебаний различных источников звука (табл. 3)

к какому виду волн относятся звуковые волны. Смотреть фото к какому виду волн относятся звуковые волны. Смотреть картинку к какому виду волн относятся звуковые волны. Картинка про к какому виду волн относятся звуковые волны. Фото к какому виду волн относятся звуковые волны

Источник звука ν, Гц Источник звука ν, Гц
Мужской голос:80-500Орган22-16000
80-350Флейта260-15000
Баритон100-400Скрипка260-15000
тенор130-500Арфа30-15000
Женский голос:170-1400Барабан90-14000
контральто170-780Контрабас60-8000
меццо-сопрано200-1000Виолончель70-8000
сопрано250-1300Труба60-6000
колоратурное сопрано260-1400Саксофон80-8000
Рояль90-9000

Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 4).

Таблица 4. Скорость звука в различных средах

Среда v,
Воздух0331
Воздух20343
Вода201490
Глицерин201920
Ртуть201450
Лед03280
Сталь205050
Стекло205300
Чугун203850

На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.

Интервал частот музыкальных звуков, на границах которого звуки по частоте отличаются в 2 раза, называют октавой (рис. 46).

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов. Основной тон называется также первой гармоникой. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр (рис. 47).

Отношение скорости движения объекта к скорости звука в среде, в которой перемещается объект, называется «числом Маха», названным в честь австрийского физика Эрнста Маха (1838—1916). Поэтому говорят, что объект, движущийся со скоростью звука, перемещается со скоростью в один мах. При этом все волновые поверхности звуковой волны концентрируются в одной точке (рис. 47-1, б). 14 декабря 1947 г. летательный аппарат впервые преодолел звуковой барьер (рис. 47-1, г).

Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук; navigation — навигация; range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой.

Эхолокацию используют многие животные: китообразные (дельфины), летучие мыши, птицы гуахаро, гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии.

Волны ультразвуковых частот широко используются в медицине в диагностических целях, например УЗИ-сканеры позволяют исследовать внутренние органы человека.

Ультразвуковая дефектоскопия является одним из самых распространенных методов неразрушающего контроля. Он основан на исследовании процесса распространения ультразвуковых колебаний с частотами 0,5—25 кГц в контролируемых изделиях с использованием специальной аппаратуры — ультразвукового преобразователя и дефектоскопа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *