к какому виду волн относятся звуковые волны
Тест по физике Источники звука 9 класс
Тест по физике Источники звука Звуковые колебания для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.
1. Обязательными условиями возбуждения звуковой волны являются
А) наличие источника колебаний
Б) наличие упругой среды
В) наличие газовой среды
1) А и Б
2) Б и В
3) А и В
4) А, Б и В
2. К какому виду волн относятся звуковые волны?
1) К поперечным механическим
2) К продольным механическим
3) К электромагнитным
4) Среди ответов нет правильного
3. Какова примерно самая низкая частота звука, слышимого человеком?
1) 2 Гц
2) 20 Гц
3) 2000 Гц
4) 20 000 Гц
4. Как называются механические колебания, частота которых превышает 20 000 Гц?
1) Звуковые
2) Инфразвуковые
3) Ультразвуковые
4) Среди ответов нет правильного
5. В воздухе распространяется звуковая волна. Расстояние от области повышенного давления до ближайшей области пониженного давления 10 см, расстояние между ближайшими областями повышенного давления 20 см, между ближайшими областями пониженного давления 20 см. Какова длина звуковой волны?
1) 10 см
2) 20 см
3) 30 см
4) 40 см
6. Человек услышал звук грома через 10 с после вспышки молнии. Считая, что скорость звука в воздухе 343 м/с, определите, на каком расстоянии от человека ударила молния.
1) 3,43 м
2) 34,3 м
3) 1715 м
4) 3430 м
7. Камертон излучает звуковую волну длиной 0,5 м. Скорость звука 340 м/с. Какова частота колебаний камертона?
1) 17 Гц
2) 680 Гц
3) 170 Гц
4) 3400 Гц
8. Как изменится длина звуковой волны при увеличении частоты колебаний ее источника в 2 раза?
1) Увеличится в 2 раза
2) Уменьшится в 2 раза
3) Не изменится
4) Уменьшится в 4 раза
9. Человеческое ухо может воспринимать звуки частотой от 20 Гц до 20 000 Гц. Какой диапазон длин волн соответствует интервалу слышимости звуковых колебаний? Скорость звука в воздухе примите равной 340 м/с.
1) От 20 м до 20 000 м
2) От 6800 м до 6 800 000 м
3) От 0,06 м до 58,8 м
4) От 0,017 м до 17 м
10. Верхняя граница частоты колебаний, воспринимаемая ухом человека, составляет для детей 22 кГц, а для пожилых людей 10 кГц. В воздухе скорость звука равна 340 м/с. Звук с длиной волны 17 мм
1) услышит только ребенок
2) услышит только пожилой человек
3) услышит и ребенок, и пожилой человек
4) не услышит ни ребенок, ни пожилой человек
Ответы на тест по физике Источники звука Звуковые колебания
1-1
2-2
3-2
4-3
5-2
6-4
7-2
8-2
9-4
10-1
Звуковые волны
Звуковые волны или звук – это колебания частиц, распространяемые волнообразно в какой-либо среде – газообразной, жидкой или твёрдой, – которые воспринимаются органами слуха животных.
Когда мы изучаем свет, то убеждаемся не только в том, что он существует вне нас, но сверх того еще и в том, что нам необходимо иметь глаза для восприятия света, иначе мы и не подозревали бы о нем. Всё вокруг нас погружается в темноту, когда мы закрываем глаза. Точно так же для нас не существовало бы мира звуков, если бы у нас не было органа слуха, который воспринимает их.
Итак, мы называем звуком то, что мы чувствуем нашим слуховым аппаратом. Но явления внешнего мира для нас имеют характер звуковых только с того момента, когда они дошли до наших ушей. Закрыв уши пальцами, мы не услышим разговора, хотя он и продолжается около нас.
Из этого следует, что как бы ни были грандиозны звуковые явления, происходящие на Солнце и Луне, они не могут произвести такого шума, который мог бы быть услышан у нас на Земле, потому что за пределами нашей атмосферы, между Землей и небесными телами, нет обычной материи.
Источники звуковых волн
Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.
Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.
Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.
Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.
Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.
Распространение звуковых волн
Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.
Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.
Скорость звука
Скорость света одинакова при всех условиях, насколько это можно было изучить. А скорость звука изменяется в значительной степени с изменением условий, при которых он распространяется в воздухе. Большое счастье для музыкального искусства заключается в том, что скорость звука изменяется только в незначительной степени с изменением высоты его или силы.
Было бы очень затруднительно слушать издали музыку, если бы звуки различных инструментов оркестра доходили до нашего слуха в разное время, в то время как композитор имел в виду, что они будут слышаться одновременно. Или, если бы мотив, разыгрываемый одной частью оркестра, доходил до нашего слуха раньше того, что играет другая часть оркестра, или позже.
1. Скорость звука в воздухе
Обычная скорость звука в воздухе считается около 331 метра (То есть около трети километра) в секунду. Когда температура воздуха поднимается, он становится более упругим и тогда прохождение звука через него совершается быстрее.
Скорость звука увеличивается с повышением температуры воздуха, если плотность его остается той же самой.
Если мы примем во внимание зависимость скорости звука от упругости проводящей его среды, то нам будет понятно, почему звук проходит значительно быстрее в жидкостях, чем в газах, и еще быстрее в твердых телах.
2. Скорость звуковых волн в твёрдых телах
Звуковые волны распространяются в твёрдых телах быстрее, чем в воздухе. Железо, когда оно в твердом состоянии, обладает большею упругостью, чем воздух, и звук проходит в нем почти в семнадцать раз быстрее, чем в воздухе
Нельзя смешивать скорость распространения звука в воздухе или в какой-либо другой среде с высотой тона. Она у музыкального звука зависит от числа колебаний в секунду, и чем их больше, тем выше тон.
Звук, как мы сказали, проходя через железо, достигает нашего уха в семнадцать раз быстрее, чем когда он проходит через воздух; высота же его тона остается той же самой в обоих случаях, потому что число колебаний в секунду остается одно и то же, хотя звук через железо проходит значительно быстрее.
3. Скорость звука в разных средах
Сила звука
Когда мы начнем исследовать силу звука на разных расстояниях, то найдем, что первый закон, относительно его, тот же, что и для света. И насколько нам известно, этот закон верен не только относительно волнообразных движений, но и такого явления, как тяготение.
На точном научном языке закон о силе звука излагается так:
Сила звука изменяется обратно пропорционально квадрату расстояния от его источника
Таким образом можно коротко и ясно выразить, например, ту мысль, что если мы удаляемся от источника звука на расстояние, которое в три раза больше прежнего, то сила звука уменьшится при этом не в три, а в девять раз: девять есть квадрат трех. Квадратом числа называется число, полученное от перемножения его на самого себя.
Когда этот закон применяется к силе света или тяготения, то нам не приходится считаться с какими-либо условиями, которые могут повлиять на них. Но если речь идёт о звуке, то дело обстоит несколько иначе. На звук влияет плотность той среды, в которой он проходит; в морозную ночь воздух очень плотен, почему нам и дышится тогда легче, звук же будет в это время слышен сильнее. С другой стороны, звук ружейного выстрела высоко в горах ослабляется, потому что воздух там редок. Это явление напоминает нам опыт со звонком под колпаком воздушного насоса.
Отражение звука
Когда мы наблюдаем, как волны моря или озера ударяют в крутой берег, мы видим, что они отражаются от него и отскакивают назад. Если поверхность берега ровная и вертикальная, то мы видим, что волны отражаются от нее точно так же, как мяч от стены. Если звук есть действительно волнообразное движение, то мы всегда можем ожидать, что и он будет так же отражаться, как водяные волны, и нам часто приходится убеждаться в этом.
Всякие движущиеся волны могут отражаться от преград на их пути; это совершается как при свете, так и при морских волнах. Есть законы отражения, которые одинаково приложимы к этим различным явлениям.
Природа грома
Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.
Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.
Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:
Волны Рэлея
Если мы наполним резиновый шар или выпуклый диск углекислым газом, то заметим, что он действует на звук точно так, как зажигательное стекло на световые лучи. Звуковые волны отклоняются газом, находящимся в шаре, так что они все собираются в одном пункте, находящемся по другую сторону шара точно так, как лучи солнца могут быть собраны на кусок бумаги в одну точку зажигательным стеклом.
Это видно из хорошо известного опыта, произведенного замечательным английским ученым, лордом Рэлеем. Опыт этот заключается в том, что нас ставят против часов на таком расстоянии, чтобы не слышать их тиканья. Если после этого гуттаперчевый шар, наполненный углекислым газом, будет помещен между нами и часами, то, находясь на том же самом расстоянии, мы услышим часы. Это происходит вследствие того, что углекислый газ преломляет звуковые волны и фокусирует их в одной точке.
Физика. 11 класс
§ 6. Звуковые волны
|
Источник звука | ν, Гц | Источник звука | ν, Гц |
Мужской голос: | 80-500 | Орган | 22-16000 |
80-350 | Флейта | 260-15000 | |
Баритон | 100-400 | Скрипка | 260-15000 |
тенор | 130-500 | Арфа | 30-15000 |
Женский голос: | 170-1400 | Барабан | 90-14000 |
контральто | 170-780 | Контрабас | 60-8000 |
меццо-сопрано | 200-1000 | Виолончель | 70-8000 |
сопрано | 250-1300 | Труба | 60-6000 |
колоратурное сопрано | 260-1400 | Саксофон | 80-8000 |
Рояль | 90-9000 |
Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 4).
Таблица 4. Скорость звука в различных средах
Среда | v, | |
Воздух | 0 | 331 |
Воздух | 20 | 343 |
Вода | 20 | 1490 |
Глицерин | 20 | 1920 |
Ртуть | 20 | 1450 |
Лед | 0 | 3280 |
Сталь | 20 | 5050 |
Стекло | 20 | 5300 |
Чугун | 20 | 3850 |
На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.
Интервал частот музыкальных звуков, на границах которого звуки по частоте отличаются в 2 раза, называют октавой (рис. 46).
Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов. Основной тон называется также первой гармоникой. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр (рис. 47).
Отношение скорости движения объекта к скорости звука в среде, в которой перемещается объект, называется «числом Маха», названным в честь австрийского физика Эрнста Маха (1838—1916). Поэтому говорят, что объект, движущийся со скоростью звука, перемещается со скоростью в один мах. При этом все волновые поверхности звуковой волны концентрируются в одной точке (рис. 47-1, б). 14 декабря 1947 г. летательный аппарат впервые преодолел звуковой барьер (рис. 47-1, г).
Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами.
Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук; navigation — навигация; range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой.
Эхолокацию используют многие животные: китообразные (дельфины), летучие мыши, птицы гуахаро, гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии.
Волны ультразвуковых частот широко используются в медицине в диагностических целях, например УЗИ-сканеры позволяют исследовать внутренние органы человека.
Ультразвуковая дефектоскопия является одним из самых распространенных методов неразрушающего контроля. Он основан на исследовании процесса распространения ультразвуковых колебаний с частотами 0,5—25 кГц в контролируемых изделиях с использованием специальной аппаратуры — ультразвукового преобразователя и дефектоскопа.
- что делают женатые люди
- что такое сварочный кондуктор