к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

Механические волны.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: механические волны, длина волны, звук.

Наличие у среды упругих свойств является необходимым условием распространения волн: деформация, возникающая в каком-либо месте, благодаря взаимодействию соседних частиц последовательно передаётся от одной точки среды к другой. Различным типам деформаций будут соответствовать разные типы волн.

Продольные и поперечные волны.

Волна называется продольной, если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис. 1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е. перпендикулярно слоям).

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах
Рис. 1. Продольная волна

Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах
Рис. 2. Поперечная волна

Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.

Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.

Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества.

Наиболее просты для изучения гармонические волны. Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.

Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:

Частотой волны называется частота колебаний частиц:

Отсюда получаем связь скорости волны, длины волны и частоты:

Тон — это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.

Источник

К какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

2) только поперечные

3) и продольные, и поперечные

Механические колебания, распространяющиеся в упругой среде, — газе, жидкости или твёрдом — называются волнами или механическими волнами. Эти волны могут быть поперечными либо продольными.

Для того, чтобы в среде могла существовать поперечная волна, эта среда должна проявлять упругие свойства при деформациях сдвига. Примером такой среды являются твёрдые тела. Например, поперечные волны могут распространяться в горных породах при землетрясении или в натянутой стальной струне. Продольные волны могут распространяться в любых упругих средах, так как для их распространения в среде должны возникать только деформации растяжения и сжатия, которые присущи всем упругим средам. В газах и жидкостях могут распространяться только продольные волны, так как в этих средах отсутствуют жёсткие связи между частицами среды, и по этой причине при деформациях сдвига никакие упругие силы не возникают.

Человеческое ухо воспринимает как звук механические волны, имеющие частоты в пределах приблизительно от 20 Гц до 20 кГц (для каждого человека индивидуально). Звук имеет несколько основных характеристик. Амплитуда звуковой волны однозначно связана с интенсивностью звука. Частота же звуковой волны определяет высоту его тона. Поэтому звуки, имеющие одну, вполне определённую, частоту, называются тональными.

Если звук представляет собой сумму нескольких волн с разными частотами, то ухо может воспринимать такой звук как тональный, но при этом он будет обладать своеобразным «окрасом», который принято называть тембром. Тембр зависит от набора частот тех волн, которые присутствуют в звуке, а также от соотношения интенсивностей этих волн. Обычно ухо воспринимает в качестве основного тона звуковую волну, имеющую наибольшую интенсивность. Например, одна и та же нота, воспроизведённая при помощи разных музыкальных инструментов (например, рояля, тромбона и органа), будет восприниматься ухом как звуки одного и того же тона, но с разным тембром, что и позволяет отличать «на слух» один музыкальный инструмент от другого.

Ещё одна важная характеристика звука — громкость. Эта характеристика является субъективной, то есть определяется на основе слухового ощущения. Опыт показывает, что громкость зависит как от интенсивности звука, так и от его частоты, то есть при разных частотах звуки одинаковой интенсивности могут восприниматься ухом как звуки разной громкости (а могут и как звуки одинаковой громкости!). Установлено, что человеческое ухо при восприятии звука ведёт себя как нелинейный прибор — при увеличении интенсивности звука в 10 раз громкость возрастает всего в 2 раза. Поэтому ухо может воспринимать звуки, отличающиеся друг от друга по интенсивности более чем в 100 тысяч раз!

Источник

К какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

2) только поперечные

3) и продольные, и поперечные

Механические колебания, распространяющиеся в упругой среде, — газе, жидкости или твёрдом — называются волнами или механическими волнами. Эти волны могут быть поперечными либо продольными.

Для того, чтобы в среде могла существовать поперечная волна, эта среда должна проявлять упругие свойства при деформациях сдвига. Примером такой среды являются твёрдые тела. Например, поперечные волны могут распространяться в горных породах при землетрясении или в натянутой стальной струне. Продольные волны могут распространяться в любых упругих средах, так как для их распространения в среде должны возникать только деформации растяжения и сжатия, которые присущи всем упругим средам. В газах и жидкостях могут распространяться только продольные волны, так как в этих средах отсутствуют жёсткие связи между частицами среды, и по этой причине при деформациях сдвига никакие упругие силы не возникают.

Человеческое ухо воспринимает как звук механические волны, имеющие частоты в пределах приблизительно от 20 Гц до 20 кГц (для каждого человека индивидуально). Звук имеет несколько основных характеристик. Амплитуда звуковой волны однозначно связана с интенсивностью звука. Частота же звуковой волны определяет высоту его тона. Поэтому звуки, имеющие одну, вполне определённую, частоту, называются тональными.

Если звук представляет собой сумму нескольких волн с разными частотами, то ухо может воспринимать такой звук как тональный, но при этом он будет обладать своеобразным «окрасом», который принято называть тембром. Тембр зависит от набора частот тех волн, которые присутствуют в звуке, а также от соотношения интенсивностей этих волн. Обычно ухо воспринимает в качестве основного тона звуковую волну, имеющую наибольшую интенсивность. Например, одна и та же нота, воспроизведённая при помощи разных музыкальных инструментов (например, рояля, тромбона и органа), будет восприниматься ухом как звуки одного и того же тона, но с разным тембром, что и позволяет отличать «на слух» один музыкальный инструмент от другого.

Ещё одна важная характеристика звука — громкость. Эта характеристика является субъективной, то есть определяется на основе слухового ощущения. Опыт показывает, что громкость зависит как от интенсивности звука, так и от его частоты, то есть при разных частотах звуки одинаковой интенсивности могут восприниматься ухом как звуки разной громкости (а могут и как звуки одинаковой громкости!). Установлено, что человеческое ухо при восприятии звука ведёт себя как нелинейный прибор — при увеличении интенсивности звука в 10 раз громкость возрастает всего в 2 раза. Поэтому ухо может воспринимать звуки, отличающиеся друг от друга по интенсивности более чем в 100 тысяч раз!

Источник

Звуковые волны, виды, длина волны и скорость звука.

Сегодня мы продолжим изучать звук и разберёмся что такое звуковые волны, какие бывают их виды, что такое длина волны и какая скорость у звука.

Звуковые волны

Звук создаётся с помощью механических колебаний голосового аппарата или различных элементов музыкальных инструментов. Подробнее о механических колебаниях мы говорили вот в этой статье ( читать ).

Виды звуковых волн

Звуковые волны делятся на продольные. Это когда направление движения частиц совпадает с направлением распространения энергии механических колебаний в упругой среде. И на поперечные. Это когда направление движения частиц перпендикулярно распространению возмущения.

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

В газах (к ним относится и воздух) распространяются только продольные волны, в твердых могут быть оба вида.

Скорость звуковой волны

Если сделать движение рукой туда и обратно, то с воздухом ничего особенного не произойдет, кроме того, что его частицы сместятся в пространстве. Если бы мы могли махать рукой сто раз в секунду, то произошло бы совсем другое. У воздуха не было бы времени освобождать путь движущейся руки. И он стал бы сжиматься, когда рука движется вперёд и разрежаться, когда она возвращалась.

Благодаря упругости в процессе таких колебаний при движении поверхности тела вперёд каждая частица воздуха толкает находящуюся впереди частицу, та следующую и т. д. При обратном движении поверхности тела сжатие сменяется разряжением, за которым опять следует сжатие.

Эти волны сжатия и разряжения передаются от одного участка к другому с определённой скоростью.

В упругой среде они распространяются со скоростью, зависящей от материала среды и от того, насколько близко расположены друг к другу его атомы и молекулы.

В газах плотность не влияет на скорость. Например, в воздухе важным параметром является его температура. Но об этом ещё поговорим.

Отметим, что скорость звука в воздухе абсолютно не зависит от числа колебаний поверхности тела. Напомним, что число колебаний в секунду (точнее один период) называется Герц (Гц). Также скорость смещения частиц и скорость звуковой волны это совершенно разные величины. Скорость частиц зависит от частоты и амплитуды звукового сигнала. А скорость звука только от свойств среды (температура, плотность, упругость).

Формулы

Зависимость скорости звуковой волны от свойств среды, где она распространяется, рассматривается по формуле:

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

E — коэффициент упругости среды, определяет силу взаимодействия частиц друг с другом; p = m/V (кг/м³) — плотность среды. У твердых тел упругость больше, чем у жидкости и газа. Поэтому соотношение скоростей звука будет таким:

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

Скорость звука в газах может быть представлена следующей формулой:

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

γ = cp/сv — отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме.

P атм — атмосферное давление, которое связано с температурой газообразной среды.

Главное, что нужно понять из этой формулы, это то, что в газообразной среде скорость звука сильно зависит от температуры (чем горячее, тем быстрее двигаются молекулы, имеет большую энергию и быстрее передают механическое возбуждение)

В воздухе скорость звука (при нормальном атмосферном давлении) приближенно можно представить так:

C = (331 + 0,6 T °) м/c

T ° — градусы Цельсия.

Например, при температуре 20 °C скорость звука равна 343 м/с

C = (331 + 0,6 × 20) = 343

При 0 °C, скорость звука равна 331 м/с, при — 20 °C = 319 м/с.

Такая зависимость особенно важна для духовых музыкальных инструментов при их настройке. Поэтому их нужно прогревать перед исполнением.

Ещё важно, что связь звуковых колебаний с размерами источника звука, которые не изменяются с температурой, не означают постоянства частоты, так как последняя зависит от скорости звука, растущей с повышением температуры. Струнные в этом случае можно подстроить. А вот вибрирующий столб во многих духовых инструментах подстроить нельзя. Ведь колебания возникают в воздушной полости инструмента, а их частота зависит от размеров полости и скорости истечения воздушных масс из неё. Например, у флейты высота звука увеличивается на полтона при повышении температуры на 15 °C.

Если переводить в км/ч, то 343 м/с, это 1235 км/ч. Это довольно быстро для человека или автомобиля. Но мало по сравнению со скоростью света 300 000 км/c.

Заканчивая о скорости звука, отметим, что скорость звука не зависит от частоты. Так как в воздушной среде отсутствует дисперсия — зависимость скорости распространения звука от частоты. Если бы в воздухе была бы дисперсия, мы не смогли бы слушать музыку в зале: все звуки, исполненные одновременно, приходили бы к слушателю в разное время.

Длина волны

Когда происходит одно сжатие и одно разрежение плотности среды происходит один период колебания. Поэтому расстояние между двумя сжатиями или двумя разряжениями звуковой волны и равно длине волны.

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

Если мы знаем частоту звука (количество волн в секунду), то мы можем вычислить расстояние между соседними соответствующими точками распространяющихся волн.

Допустим звук с известной нам скоростью 340 м/с имеет частоту 340 Гц. При этих параметрах длина волны будет равна 1 метру.

Формула для расчёта длины волны

А формула вычислений такая:

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

λ — длина волны, c — скорость, f — частота.

Конечно, эти расчеты являются приближенными. Так как мы уже знаем, что скорость звука в воздухе зависит от температуры, давления. Но на практике, чтобы рассчитать толщину звукопоглотителя для ослабления звука определённого диапазона частот или для оценки размера мембраны микрофона, этого вполне достаточно.

Музыкальные ноты имеет определённые частоты, значит и определённую длину волн. Например, у фортепиано верхняя октава создаёт звуки в районе 2 см, а нижняя около 10 м. Но дека фортепиано не очень эффективно генерирует эти звуки, в отличии, например, от органа. Почему?

Вернёмся к нашей руке. Допустим мы всё-таки наделены сверх способностями и можем махать рукой 100 раз в секунду = 100 Гц. Этот источник звука был бы всё равно несовершенен, так как часть воздуха огибала его сбоку. Чтобы этого не было, источник для таких низких частот должен быть гораздо большего размера (например, дека фортепиано более эффективна, поскольку потери на её краях невелики, а органа ещё эффективнее). Если же вибратор колеблется очень быстро воздух не успевает растекаться по сторонам. Поэтому для очень высоких частот даже малые поверхности могут быть эффективными излучателями звука.

Спасибо, что читаете New Style Sound. Подписывайтесь и делитесь с друзьями.

Источник

Физика. 11 класс

§ 6. Звуковые волны

Звуковые волны (звук) окружают человека с первых дней его жизни. Звуки позволяют людям общаться между собой, выражать эмоции, наслаждаться музыкальными шедеврами. Как это происходит? Каковы основные свойства звуковых волн?

Упругие волны, вызывающие у человека слуховые ощущения, называются звуковыми волнами или просто звуком. Человеческое ухо воспринимает в виде звуковых ощущений колебания от 16 до 20 000 Гц.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.
Звуковые волны классифицируются по частоте следующим образом (рис. 41):

инфразвук (ν слышимый человеком звук (16 Гц ультразвук ( ); гиперзвук ( ).

Звуки (звуковые волны) приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся музыкой, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и можем безошибочно отличить пение птиц от шума городской улицы.
к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

Что представляет собой звук и каким образом он возникает?
Рассмотрим в качестве источ­ни­ка звука барабан (рис. 42). Де­фор­мированная в результате удара мем­брана барабана будет совершать колебания с некоторой частотой. В результате этого мембрана создает попеременно сжатие и разрежение в прилегающей к ней области воздуха, и образуется продольная волна, которая распространяется в воздухе с течением времени.

Наглядную информацию о звуковой волне в некоторый момент времени дает график зависимости плотности воздуха от координаты (рис. 43). Горбы на этом графике соответствуют сжатию, а впадины — разряжению воздуха. В процессе распространения звуковой волны с течением времени изменяются такие характе­ристики среды, как плотность и давление (см. рис. 43).
Для распространения звуковых волн необходима среда с упругими свойствами. Они хорошо распространяются в упругих средах, таких как газ, жидкость, металлы, стекло, кристаллические материалы. Однако звуковые волны быстро затухают в пористых материалах (поролон, вой­лок, вата). Такие материалы используют для звукоизоляции. Лучшим изолятором звука является вакуум (пустота), так как результаты экспериментов показывают, что звуковые волны в пустоте (вакууме) не распространяются.
Основными физическими характеристиками звука являются интенсивность и спектральный состав (спектр).

В соответствии с определением единицей интенсивности в СИ является ватт на метр в квадрате ( ).

Диаграмма восприятия звука ухом человека приведена на рисунке 43-1.

Интенсивность звука, улавливаемого ухом человека, лежит в огромных пределах: от (порог слышимости) до (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль. Звуки еще большей интенсивности могут привести к травме.

В науке и технике уровни интенсивности звука определяют обычно, используя шкалу, единицей которой является бел (Б) или ее дольная единица — децибел (дБ) (одна десятая бела). Уровень интенсивности самого слабого звука, который воспринимает наше ухо, соответствует 1 бел (1Б). Она названа в честь изобретателя телефона А. Г. Белла.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на 10 дБ. Вследствие этого, звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ (см. рис. 43-1).

Поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Таким образом, для возникновения звуковых ощущений необходимо:

• наличие источника звука;
• наличие упругой среды между источником звука и ухом. При этом частота колебаний источника звука должна находиться в пределах 16—20 000 Гц;
• мощность звуковых волн должна быть достаточной для того, чтобы вызвать ощущение звука.
Еще одной основной характеристикой звука является его спектр. Спектром называется набор частот звуков различных колебаний, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.
Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.
По типу спектра звуки разделяются на музыкальные тона и шумы.
Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. Спектр гармонического колебания представляет собой одну вертикальную линию (рис. 44).
Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т. п.) — представляет собой нало­жение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр) (рис. 45).

Шумы по частотной характеристике разделяются на низкочастотные

Длительное воздействие шумов на человека приводит к повреждению центральной нервной системы, повышению кровяного и внутричерепного давления, нарушению нормальной работы сердца, головокружению. Вредное воздействие сильных шумов на человека было замечено давно (рис. 45-1).

В Китае еще 2000 лет назад в качестве наказания заключенные подвергались непрерывному воздействию звуков флейт, барабанов и крикунов, пока не падали замертво. При мощности шума 3 кВт и частоте 800 Гц нарушается способность глаза к фокусировке. Мощность шума 5—8 кВт дезорганизует работу скелетной мускулатуры, вызывает паралич, потерю памяти. Мощность шума около 200 кВт приводит к смерти. Поэтому в больших городах запрещено использование резких и громких сигналов. Значительно снижают шумы деревья, кустарники, которые их поглощают. Поэтому вдоль дорог с интенсивным автомобильным движением необходимы зеленые насаждения. Тишина значительно повышает остроту слуха.

Для определения уровня шума используют шумомеры (рис. 45-2).

Физическим характеристикам звука соответствуют его субъективные характеристики, связанные с его восприятием ухом человека. Это обусловлено тем, что восприятие звука — процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей по-разному, в зависимости от чувствительности органов слуха.

Основными физиологическими характеристиками звука являются громкость, высота и тембр.
Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 до 5000 Гц.

Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.

Для музыкального звука (созвучия) основной тон соответствует наименьшей частоте (рис. 46). Все остальные тоны называют обертонами.

Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота.
По тембру мы легко отличаем звуки скрипки и рояля, органа и флейты, голоса людей и т.д.

Таблица 3. Частота ν колебаний различных источников звука (табл. 3)

к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Смотреть картинку к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Картинка про к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах. Фото к какому виду относятся звуковые волны распространяющиеся в жидкостях и газах

Источник звука ν, Гц Источник звука ν, Гц
Мужской голос:80-500Орган22-16000
80-350Флейта260-15000
Баритон100-400Скрипка260-15000
тенор130-500Арфа30-15000
Женский голос:170-1400Барабан90-14000
контральто170-780Контрабас60-8000
меццо-сопрано200-1000Виолончель70-8000
сопрано250-1300Труба60-6000
колоратурное сопрано260-1400Саксофон80-8000
Рояль90-9000

Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 4).

Таблица 4. Скорость звука в различных средах

Среда v,
Воздух0331
Воздух20343
Вода201490
Глицерин201920
Ртуть201450
Лед03280
Сталь205050
Стекло205300
Чугун203850

На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.

Интервал частот музыкальных звуков, на границах которого звуки по частоте отличаются в 2 раза, называют октавой (рис. 46).

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов. Основной тон называется также первой гармоникой. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр (рис. 47).

Отношение скорости движения объекта к скорости звука в среде, в которой перемещается объект, называется «числом Маха», названным в честь австрийского физика Эрнста Маха (1838—1916). Поэтому говорят, что объект, движущийся со скоростью звука, перемещается со скоростью в один мах. При этом все волновые поверхности звуковой волны концентрируются в одной точке (рис. 47-1, б). 14 декабря 1947 г. летательный аппарат впервые преодолел звуковой барьер (рис. 47-1, г).

Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук; navigation — навигация; range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой.

Эхолокацию используют многие животные: китообразные (дельфины), летучие мыши, птицы гуахаро, гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии.

Волны ультразвуковых частот широко используются в медицине в диагностических целях, например УЗИ-сканеры позволяют исследовать внутренние органы человека.

Ультразвуковая дефектоскопия является одним из самых распространенных методов неразрушающего контроля. Он основан на исследовании процесса распространения ультразвуковых колебаний с частотами 0,5—25 кГц в контролируемых изделиях с использованием специальной аппаратуры — ультразвукового преобразователя и дефектоскопа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *