к какому типу органических соединений относится хлоропрен
Карточки на тему «Классификация органических соединений»
Ищем педагогов в команду «Инфоурок»
Карточка 4 Классификация органических соединений
1. К какому типу органических соединений относится хлоропрен (исходное вещество для получения некоторых сортов синтетического каучука):
Ответ 1 : к непредельным алициклическим
Ответ 2 : к непредельным ациклическим
Ответ 3 : к предельным алифатическим
3. Какие из приведенных соединений относятся к классу:
а) спиртов; б) карбоновых кислот?
I. C3H7OH; II. CH3CHO; III. CH3COOH; IV. CH3NO2
Ответ 1 : а) III ; б) IV Ответ 2 : а) I; б) II
Ответ 3 : а) II; б) I Ответ 4 : а) I; б) III
4. Строение адреналина отражает формула
Укажите классы, к которым можно отнести это соединение: а) альдегиды; г) спирты; ж) простые эфиры; б) фенолы; д) кетоны; з) сложные эфиры; в) кислоты; е) амины; и) нитросоединения.
Курс профессиональной переподготовки
Библиотечно-библиографические и информационные знания в педагогическом процессе
Курс повышения квалификации
Охрана труда
Курс профессиональной переподготовки
Охрана труда
Номер материала: ДБ-857712
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Около половины детей болеют коронавирусом в бессимптомной форме
Время чтения: 1 минута
Гинцбург анонсировал регистрацию детской вакцины от COVID-19
Время чтения: 1 минута
Минтруд предложил проект по реабилитации детей-инвалидов
Время чтения: 1 минута
В Москве стартует онлайн-чемпионат для школьников Soft Skills — 2035
Время чтения: 1 минута
Минпросвещения планирует прекратить прием в колледжи по 43 профессиям
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Классификация соединений по функциональным группам
КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
Органические соединения отличаются своей многочисленностью и разнообразием. Поэтому необходима их систематизация. Органические соединения классифицируют, учитывая два основных структурных признака:
— строение углеродной цепи (углеродного скелета);
— наличие и строение функциональных групп.
Классификация соединений по строению углеродной цепи
В зависимости от строения углеродной цепи органические соединения делят на ациклические и циклические.
Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи C-C и непредельные (ненасыщенные), включающие кратные связи C=C и C C.
Классификация соединений по функциональным группам
Соединения, в состав которых входят только углерод и водород, называются углеводородами. Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы. В зависимости от природы функциональных групп органические соединения делят на классы. Некоторые наиболее характерные функциональные группы и соответствующие им классы соединений приведены в таблице:
В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп.
Например:
HO-CH2-CH2-OH(этиленгликоль);
NH2-CH2-COOH(аминокислота глицин).
Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета. Соединения каждого класса составляют гомологический ряд.
Для получения гомологов используют единые методы. Гомологи обладают близкими химическими свойствами и закономерно изменяющимися физическими свойствами.
1.3 Контрольные вопросы
1. К какому типу органических соединений относится хлоропрен (исходное вещество для получения некоторых сортов синтетического каучука):
Ответ 1 : к непредельным алициклическим
Ответ 2 : к непредельным ациклическим
Ответ 3 : к предельным алифатическим
Ответ 4 : к непредельным гетероциклическим
3. Какие из приведенных соединений относятся к классу:
а) спиртов; б) карбоновых кислот?
I. C3H7OH; II. CH3CHO; III. CH3COOH; IV. CH3NO2
Ответ 1 : а)III; б)IV
Ответ 2 : а)I; б)II
Ответ 3 : а)II; б)I
Ответ 4 : а)I; б)III
4. Строение адреналина отражает формула
Укажите классы, к которым можно отнести это соединение:
а) альдегиды; | г) спирты; | ж) простые эфиры; |
б) фенолы; | д) кетоны; | з) сложные эфиры; |
в) кислоты; | е) амины; | и) нитросоединения. |
Ответ 1 : а, д, е
Ответ 2 : б, г, е
Ответ 3 : а, б, г, и
Ответ 4 : г, д, ж
Ответ 5 : б, г, з
2.Кислородсодержащие органические соединения |
ВВЕДЕНИЕ
Существует огромное число органических соединений, в состав которых наряду с углеродом и водородом входит кислород. Атом кислорода содержится в различных функциональных группах, определяющих принадлежность соединения к конкретному классу.
Соединения каждого класса образуют различные производные. Например, к производным спиртов относятсяпростые эфиры ROR’, к производным карбоновых кислот – сложные эфиры RCOOR’, амиды RCONH2, ангидриды(RCO)2O, хлорангидриды RCOCl и т.д.
Кроме того, большую группу составляют гетерофункциональные соединения, содержащие различные функциональные группы:
· гидроксикислоты HO–R–COOH и т.п.
К важнейшим гетерофункциональным кислородсодержащим соединениям относятся углеводы Cx(H2O)y, молекулы которых включают гидроксильные, карбонильные и производные от них группы.
Чтобы лучше понять строение и свойства этих соединений, необходимо вспомнить электронное строение атома кислорода и дать характеристики его химическим связям с другими атомами.
Спирты
Простейшие спирты | ||
Название | Формула | Модели |
Метиловый спирт (метанол) | CH3-OH | |
Этиловый спирт (этанол) | CH3CH2-OH | |
Классификация спиртов
Спирты классифицируют по различным структурным признакам.
Двухатомные спирты с двумя ОН-группами при одном и том же атоме углерода R–CH(OH)2 неустойчивы и, отщепляя воду, сразу же превращаются в альдегиды R–CH=O. Спирты R–C(OH)3 не существуют.
В многоатомных спиртах различают первично-, вторично- и третичноспиртовые группы. Например, молекула трехатомного спирта глицерина содержит две первичноспиртовые (HO–СH2–) и одну вторичноспиртовую (–СН(ОН)–) группы.
Непредельные спирты с ОН-группой при атоме углерода, соединенном с другим атомом двойной связью, очень неустойчивы и сразу же изомеризуются в альдегиды или кетоны. Например, виниловый спирт CH2=CH–OH превращается в уксусный альдегид CH3–CH=O
Фенолы
Фенолы – гидроксисоединения, в молекулах которых ОН-группы связаны непосредственно с бензольным ядром.
VRML-модель молекулы фенола
В зависимости от числа ОН-групп различают одноатомные фенолы (например, вышеприведенные фенол и крезолы) имногоатомные. Среди многоатомных фенолов наиболее распространены двухатомные:
Как видно из приведенных примеров, фенолам свойственна структурная изомерия (изомерия положения гидроксигруппы).
УГЛЕВОДЫ
Углеводы (сахара) – органические соединения, имеющие сходное строение и свойства, состав большинства которых отражает формула Cx(H2O)y, где x, y ≥ 3.
Общеизвестные представители: глюкоза (виноградный сахар) С6Н12О6, сахароза (тростниковый, свекловичный сахар)С12Н22О11, крахмал и целлюлоза [С6Н10О5]n.
Углеводы содержатся в клетках растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. Эти соединения образуются растениями в процессе фотосинтеза из углекислого газа и воды при участии хлорофилла. Животные организмы не способны синтезировать углеводы и получают их с растительной пищей.
Фотосинтез можно рассматривать как процесс восстановления СО2 с использованием солнечной энергии. Эта энергия освобождается в животных организмах в результате метаболизма углеводов, который заключается, с химической точки зрения, в их окислении.
Углеводы объединяют разнообразные соединения – от низкомолекулярных, состоящих из нескольких атомов (x = 3), до полимеров [Cx(H2O)y]n с молекулярной массой в несколько миллионов (n > 10000).
По числу входящих в их молекулы структурных единиц (остатков простейших углеводов) и способности к гидролизу углеводы подразделяют на моносахариды, олигосахариды и полисахариды.
Моносахариды не гидролизуются с образованием более простых углеводов.
Олиго- и полисахариды расщепляются при гидролизе до моносахаридов. В молекулах олигосахаридов содержится от 2 до 10 моносахаридных остатков, в полисахаридах – от 10 до 3000-5000.
НЕКОТОРЫЕ ВАЖНЕЙШИЕ УГЛЕВОДЫ
Моносахариды | Олигосахариды | Полисахариды |
Глюкоза С6Н12О6 Фруктоза С6Н12О6 Рибоза С5Н10О5 Дезоксирибоза С5Н10О4 | Сахароза (дисахарид) С12Н22О11 Лактоза (дисахарид) С12Н22О11 Раффиноза (трисахарид) С18Н32О16 | Целлюлоза (С6Н10О5)n Крахмал (С6Н10О5)n Гликоген (С6Н10О5)n |
Для большинства углеводов приняты тривиальные названия с суффиксом -оза (глюкоза, рибоза, сахароза, целлюлоза и т.п.).
Моносахариды
В природе наиболее распространены моносахариды, в молекулах которых содержится пять углеродных атомов (пентозы) или шесть (гексозы). Моносахариды – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных. Например:
Следовательно, моносахаридам, кроме приведенных формул, свойственна также иная структура, возникающая в результате внутримолекулярной реакции между карбонильной группой с одним из спиртовых гидроксилов.
В разделе 3.2 приведена реакция присоединения спирта к альдегиду с образованием полуацеталя R-CH(OH)OR’. Такая реакция внутри одной молекулы сопровождается ее циклизацией, т.е. образованием циклического полуацеталя.
Известно, что наиболее устойчивыми являются 5-ти и 6-ти членные циклы (часть II, раздел 3.2). Поэтому, как правило, происходит взаимодействие карбонильной группы с гидроксилом при 4-м или 5-м углеродном атоме (нумерация начинается с карбонильного углерода или ближайшего к нему конца цепи).
Таким образом, в результате взаимодействия карбонильной группы с одной из гидроксильных моносахариды могут существовать в двух формах: открытой цепной (оксо-форме) и циклической (полуацетальной). В растворах моносахаридов эти формы находятся в равновесии друг с другом. Например, в водном растворе глюкозы существуют следующие структуры:
Подобное динамическое равновесие структурных изомеров называется таутомерией. Данный случай относится к цикло-цепной таутомерии моносахаридов.
С учетом пространственного строения шестичленного цикла (см. анимацию) формулы этих изомеров имеют вид:
Аналогичные процессы происходят и в растворе рибозы:
В твердом состоянии моносахариды имеют циклическое строение.
Химические свойства моносахаридов обусловлены наличием в молекуле функциональных групп трех видов (карбонила, спиртовых гидроксилов и полуацетального гидроксила).
а) спиртовое брожение | C6H12O6 |
б) молочно-кислое брожение | C6H12O6 |
в) масляно-кислое брожение | C6H12O6 |
г) лимонно-кислое брожение | C6H12O6 + O2 |
д) ацетон-бутанольное брожение | 2C6H12O6 |
В живом организме в процессе метаболизма глюкоза окисляется с выделением большого количества энергии:
C6H12O6 + 6O2 6CO2 + 6H2O + 2920 кДж
Дисахариды
Дисахариды – это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой).
Связи, соединяющие моносахаридные остатки, называются гликозидными.
Примером наиболее распространенных в природе дисахаридов является сахароза (свекловичный или тростниковый сахар). Молекула сахарозы состоит из остатков глюкозы и фруктозы, соединенных друг с другом за счет взаимодействия полуацетальных гидроксилов (1→2)-гликозидной связью:
Сахароза, находясь в растворе, не вступает в реакцию «серебряного зеркала», так как не способна превращаться в открытую форму, содержащую альдегидную группу. Подобные дисахариды не способны окисляться (т.е. быть восстановителями) и называются невосстанавливающими сахарами.
Существуют дисахариды, в молекулах которых имеется свободный полуацетальный гидроксил, в водных растворах таких сахаров существуют равновесие между открытой и циклической формами молекул. Эти дисахариды легко окисляются, т.е. являются восстанавливающими, например, мальтоза.
В мальтозе остатки глюкозы соединены (1→ 4)-гликозидной связью.
Для дисахаридов характерна реакция гидролиза (в кислой среде или под действием ферментов), в результате которой образуются моносахариды:
При гидролизе различные дисахариды расщепляются на составляющие их моносахариды за счёт разрыва связей между ними (гликозидных связей):
Таким образом, реакция гидролиза дисахаридов является обратной процессу их образования из моносахаридов.
АМИНОКИСЛОТЫ
Это замещенные карбоновые кислоты, в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами.
Простейший представитель — аминоуксусная кислота H2N-CH2-COOH (глицин)
Аминокислоты классифицируют по двум структурным признакам.
1.В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.
2. По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. Примером ароматической аминокислоты может служить
пара-аминобензойная кислота:
Хлоропрен
Хлоропрен | |
Общие | |
---|---|
Хим. формула | C4H5Cl |
Физические свойства | |
Молярная масса | 88.5365 г/моль |
Плотность | 0.9598 г/см³ |
Термические свойства | |
Т. плав. | -130 °C |
Т. кип. | 59.4 °C |
Классификация | |
Рег. номер CAS | 126-99-8 |
SMILES |