Что убивает все вирусы

Какие вещества разрушают COVID-19

ЩЁЛОЧИ Сам вирус- имеет очень хрупкую структуру, единственная его защита – липидный слой. Этот жировой слой быстро разрушается под действием щелочной среды под действием пены, мыла, моющих средств. Без разрушенного жирового слоя белковая часть вируса практически беззащитна и очень быстро разрушается.Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

ТЕМПЕРАТУРА. Также влияет на состояние жировой оболочки, чем теплее- тем быстрее «растопится» жировой слой оболочки вируса. Поэтому все обработки от вируса проводите теплой и горячей водой- это касается как мытья рук, так и влажной уборки и обработки поверхностей

СПИРТЫ. Спиртовая смесь в виде любого алкоголя более 65% растворяет защитную оболочку вируса.

ОТБЕЛИВАТЕЛЬ. В соотношении 1 часть бытового отбеливателя к 5-ти частям воды отлично расщепляет вирусный белок. Напомню, что в рекомендациях НИИ Дезинфектологии Роспотребнадзора по выбору средств для дезинфекции при коронавирусной инфекции применяют и спирт-содержащие и хлор-активные соединения!

ПЕРЕКИСЬ ВОДОРОДА. Также эффективна в борьбе с вирусами, но в меньшей степени, чем спирты. Разрушает вирус в концентрации не менее 3%, используется преимущественно для обработки поверхностей и мытья полов, так как в данной концентрации неблагоприятно воздействует на кожу и может испортить некоторые поверхности.


АНТИБИОТИКИ.
Обладают бактерицидным действием, воздействует на бактерии. В отношении вирусов – не «работают».

СКОЛЬКО ВРЕМЕНИ ВИРУС СОХРАНЯЕТСЯ НА ПОВЕРХНОСТЯХ

Ткань и другие пористые поверхности- 3 часа.

Медь и дерево- 4 часа. (Медь обладает антисептическими свойствами, а древесина оттягивает на себя влагу, что препятствует отслаиванию и делению вируса).Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

УЛЬТРАФИОЛЕТ. Уничтожает вирус быстро. Вместе с белком вируса способен воздействовать и на бели кожи, вызывая раннее старение кожи и риск заболеваний, поэтому при УФ-обеззараживании нужно соблюдать дополнительные меры предосторожности.

Коронавирус не попадает в организм через здоровую кожу, но может находиться в складках кожи, под ногтями, на теле и быть занесенным при контакте с руками.

Соблюдайте простые правила гигиены и дезинфекции и будьте здоровы!

Источник

Поделиться:

Мы продолжаем цикл статей, посвящённых разным группам лекарственных средств – механизмам их действия и правилам их приёма. На этот раз речь пойдёт о противовирусных средствах, призванных бороться за наше здоровье с опасным невидимым врагом. Для того, чтобы понять, как препараты противостоят этому виду инфекций, мы кратко рассмотрим саму природу вирусов и ту разрушительную деятельность, которую они осуществляют в организме.

Что такое вирусы и как они действуют на организм?

Вирус представляет собой простейшую биологическую конструкцию из белковой оболочки с генетическим материалом (ДНК или РНК) внутри. У ряда вирусов есть ещё одна оболочка из липидов (жиров). В среднем вирусы в 50-70 раз меньше бактерий и сходны по размерам с молекулами биополимеров (белков, жиров и т.д.). Вирусы настолько малы и просто устроены, что среди учёных до сих пор продолжается концептуальный спор на тему того, стоит ли считать их живыми организмами. Аргументы «против»: вирусы не состоят из клеток и у них нет обмена веществ. Аргументы «за»: вирусы, как и всё живое, обладают собственными генами и способны размножаться. По существу, вирусы представляют собой тонкую границу между живым и неживым на нашей планете.

Важно! Почему бессмысленно пытаться лечить вирусные инфекции антибиотиками? Как раз потому, что вирусы малы и непохожи на обычные живые организмы. Механизм действия всех антибиотиков направлен на то, чтобы вывести из строя ту или иную часть бактериальной клетки: её клеточную стенку, цитоплазматическую мембрану или даже механизм образования нужных для её выживания внутриклеточных белков. Дело в том, что у вирусов этого всего нет! У них вообще нет клеточной структуры (они сами в десятки раз меньше обычной живой клетки), а значит, и активные вещества антибиотиков на них не подействуют.

Внутри организма хозяина вирус проделывает несколько важных операций. Сначала ему нужно прикрепиться к клеткам-мишеням. Для этого он использует белки на своей оболочке и белки на клеточной мембране по принципу «ключ-замок». «Куда попало» прицепиться попросту не выйдет. Именно поэтому один и тот же вирус может действовать на одни организмы и быть безопасным для других – у них разные белки на клеточных мембранах, и не все «ключи» подходят ко всем «замкам».

Второй шаг – внедрить в клетку свой генетический материал. Вне клетки вирус размножаться не способен. Существует целый ряд разных механизмов доставки вирусных ДНК и РНК внутрь клетки.

К примеру, вирусы гриппа идут на «хитрость», используя в своих целях такой естественный процесс, как эндоцитоз.

В ходе эндоцитоза клетка при помощи особых молекулярных шариков (везикул) захватывает из внешней среды те питательные вещества, которые не способны проникнуть через её мембрану другими путями. Вирус гриппа «запрыгивает» в везикулы, и клетка сама доставляет его внутрь. Ещё один распространённый способ проникновения – при помощи фермента нейраминидазы (которая содержится в белковой оболочке вируса) «проделать дырку» в клеточной мембране и запустить туда генетический материал.

И третий ключевой этап – это, собственно, само размножение. В комфортной среде внутри клетки вирусный генетический материал начинает воспроизводиться с бешеной скоростью, параллельно запуская процесс «сборки» вирусных белков. Клетка превращается в «фабрику» по клонированию вирусов. В итоге клетка погибает: либо её разрывает от невероятного количества расплодившихся вирусов, либо «пришельцы» настолько сильно нарушают её естественные жизненные процессы, что она включает режим самоубийства (процесс контролируемой клеточной гибели, или апоптоз). Так или иначе – ничего хорошего.

Блокаторы М2‑каналов

Теперь перейдём непосредственно к противовирусным лекарственным препаратам. Сразу оговоримся, что речь пойдёт о ключевых группах препаратов для лечения ОРВИ и гриппа – лекарства от ВИЧ или экзотических инфекций стоит обсуждать отдельно.

Первая группа – это блокаторы М2-каналов. Белок М2 находится в оболочке вируса. Он формирует особые ионные каналы, которые позволяют изменять кислотность среды внутри белковой капсулы вируса – той самой, в которой хранится генетический материал. Когда вирус проникает внутрь клетки, ему необходимо «вытолкнуть» гены из своей капсулы. Этого не произойдёт, пока кислотность внутри капсулы остаётся прежней. Таким образом, успешная работа М2-каналов обеспечивает высвобождение генетического материала внутри клетки и запускает процесс размножения.

Блокаторы М2-каналов подавляют действие белка М2, «отключая» ионные каналы в оболочке вируса и останавливая таким образом его размножение. Представители этой группы препаратов – римантадин и амантадин.

Ингибиторы нейраминидазы

Со словом «нейраминидаза» мы уже знакомы. Это тот самый фермент, который локально разрушает клеточную мембрану и открывает вирусу доступ внутрь клетки. Ингибиторы нейраминидазы связываются с аминокислотами на активном участке её молекулы и таким образом тормозят её действие. Ещё один полезный эффект этой группы препаратов основан на их способности подавлять цитокины – особые вещества, отвечающие за воспаление. Благодаря этому ингибиторы нейраминидазы оказывают жаропонижающий эффект.

Представители этой группы препаратов – осельтамивир и занамивир.

Остальные препараты

Вопросы эффективности

Нередко потребители лекарств задаются вопросом: «Какие противовирусные средства эффективней? И вообще, работают ли они на самом деле?». Дескать, если у человека «иммунитет хороший», то он в любом случае болеет максимум неделю, вне зависимости от того, принимает ли он противовирусные или нет. А его знакомый со слабым иммунитетом «мучается с соплями» целый месяц, несмотря на то, что глотает таблетки горстями.

В этих рассуждениях есть доля правды – эффект любого лекарственного средства в каждом конкретном организме зависит от особенностей этого организма. Эти особенности: индивидуальные «настройки» обмена веществ, возраст, пол, ранее перенесённые болезни и даже уровень стресса. Нет никакой гарантии, что препарат подействует на вас в точности так же, как на вашего знакомого или, тем более, на автора отзыва из интернета.

Тем не менее, достойный ориентир в вопросах эффективности лекарств всё-таки есть. Это результаты клинических исследований, проведённых по общепринятым мировым стандартам. Из-за строгости этих стандартов качественные клинические исследования достаточно дороги, и не каждый производитель лекарств считает нужным их проводить.

Важно! Мы публикуем ссылку на этот список и другую информацию о лекарственных средствах исключительно с ознакомительными целями. Прежде чем принимать тот или иной препарат, обязательно посоветуйтесь со своим лечащим врачом. Он сможет учесть все ваши индивидуальные особенности и назначить лекарство под свою ответственность.

Как принимать противовирусные средства?

В случае с противовирусными препаратами самое важное не «как?», а «когда?». Рекомендуется принимать эти лекарства в течение двух суток с момента проявления первых симптомов инфекции или с момента контакта с больным. Это требование объясняется механизмом действия таких лекарственных средств, который мы описали выше. Их основная задача – затормозить размножение вируса. Именно поэтому чем раньше начать их принимать, тем лучше.

Напомним, что ключевые симптомы респираторных вирусных инфекций – это жар, озноб, резкая усталость, головная боль, боль в мышцах и суставах, заложенный нос и боль (першение) в горле.

Лечитесь с умом, не забывайте обращаться к врачу и будьте здоровы!

Марк Волков, редактор онлайн-журнала для фармацевтов и медицинских работников «Катрен-Стиль»

Источник

Как можно уничтожить вирус: обзор средств и методов

Нужен лишь надежный антисептик. И на примере средства «Чистые руки» от ООО НБТ–Сибирь мы узнаем, каким он должен быть.

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Designed by nakaridore/Freepik

Казалось бы, зачем сейчас нужны эти антисептики? Пандемия COVID-19 вроде бы сошла на нет. Никаких причин судорожно протирать руки каждый час. Но вы даже не представляете, с каким обилием микробов мы контактируем, когда тренируемся на воздухе, копаемся в огороде, помогаем ребенку лепить куличи в песочнице, или покупаем фрукты на рынке. Тут вам и кишечная палочка, и стафилококки, и кое-что похуже – например, возбудитель столбняка. Ну и разнообразные вирусы – куда без них.

Допустим, вы заразились простудой или тем самым злосчастным коронавирусом. И тут нужно понимать одно: любой вирус, проникая в живую клетку, тут же образует с ней симбиотический комплекс. И как только это случиться, «выгонять» его народными средствами и лекарствами бесполезно. Клетка вскоре погибнет, а копии вируса быстренько заразят соседние.

Остается уповать лишь на крепость иммунитета и помогать ему по мере возможности: горячим чаем, отдыхом, полосканием горла. Это то, что медики называют симптоматическим лечением.

Если конкретнее, убивают вирусы и бактерии несколькими способами:

Воздействие химических средств;

Антисептики, действующие на вирусы: варианты

Самые живучие и распространенные – респираторные вирусы. Всё потому что их много, а заразиться проще некуда. Заболевшему достаточно покашлять в вашу сторону или поприветствовать рукопожатием.

Органы дыхания можно худо-бедно уберечь при помощи респираторов и медицинских масок, но остаются ещё руки. Ими мы постоянно до чего-то дотрагиваемся, а потом невзначай чешем глаза, переносицу или рот. Отучивать себя от этой привычки бесполезно. Так что остается два варианта защиты: регулярно мыть руки с мылом и пользоваться дезинфицирующими средствами.

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Designed by Freepik

По соотношению цена–качество–безопасность оптимален именно спирт, поэтому он сейчас является основным компонентом почти всех санитайзеров. Не случайно в рекомендациях Всемирной организации здравоохранения по антисептикам фигурируют исключительно спирты: либо изопропиловый, либо этиловый.

Возможны варианты и комбинации, чтобы усилить обеззараживающий эффект:

Спирт и гексамидин;

Спирт и дидецилдиметиламмоний хлорид;

Спирт и перекись водорода и т.д.

Почему спирт убивает вирусы?

У любых спиртов есть одно особое свойство – они расщепляют белки. Можно даже провести эксперимент: разбейте сырое яйцо в стакан, капните туда немного водки и через какое-то время увидите, как белок мутнеет.

Точно так же любой спирт уничтожает вирус, попросту растворяя его липидную мембрану. Нужно, чтобы концентрация раствора была выше 60%, и тогда зловредный микроб погибает практически мгновенно.

Изопропиловый спирт лучше этилового

Наиболее надежные антисептики в основе своей содержат либо этиловый спирт-денатурат, либо изопропиловый спирт (он же 2-пропанол, изопропил). Химическая формула у них разная, но свойства практически идентичны. Например, коронавирус SARS-CoV-2 на твердом покрытии они убивают примерно за 15–30 секунд в зависимости от материала.

Однако изопропиловый спирт лучше этилового по нескольким параметрам:

Дезинфицирующая активность у него выше, средства расходуется меньше;

Этанол производят из органического сырья (зерно), а 2-пропанол из пропилена, он в среднем дешевле и доступнее;

Изопропиловый спирт безопаснее, чем денатурат. Выпив по ошибке такой антисептик, человек пьянеет практически мгновенно и не успевает принять летальную дозу;

Изопропил обладает меньшей летучестью и лучше хранится;

У изопропила не так выражен спиртовой запах при нанесении на кожу. Он быстро высыхает и не раздражает неприятным ароматом.

Хлоргексидин убивает вирусы или нет?

Ещё одно популярное антисептическое средство – хлоргексидин известно тем, что хорошо уничтожает бактерии и грибки. Потому его широко используют для лечения урогенитальных инфекций, при сепсисе, стоматите, гингивите и прочих воспалительных процессах. Полоскать горло во время простуды хлоргексидином тоже не возбраняется.

Лучший антисептик против вирусов и бактерий – «Чистые руки»

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Designed by Freepik

Ну а теперь расскажем, как выглядит правильный санитайзер: 70% изопропилового спирта + хлоргексидин. Ровно таким раствором по инструкции положено обрабатывать хирургическую зону перед операциями. Им же можно безбоязненно протирать руки после поездки в общественном транспорте или походов по магазинам. Ну и логично добавить в состав какой-нибудь увлажняющий компонент, поскольку спирт сильно сушит кожу.

Собственно говоря, поэтому антисептик для рук «Чистые руки» можно назвать золотым стандартом дезинфекции:

Убивает бактерии, вирусы и грибки практически со стопроцентной эффективностью;

Поставляется в различных емкостях, включая карманные дозаторы и бутылки с триггером, удобные для уборки помещений;

Содержит глицерин, потому не сушит кожу при ежедневном применении;

Экономичен, безопасен и прост в использовании;

Универсален. Можно использовать и для гигиены рук, и для уборки рабочего места, и для протирания верхней одежды.

Чтобы купить антисептик «Чистые руки», достаточно выбрать нужный товар, заполнить форму и отправить заявку производителю.

Как правильно пользоваться антисептиком (инструкция)

Наносите средство в общественных местах после контакта с общими предметами (дверные ручки, перила, поручни, товары на полках и т.д.), перед едой и надеванием медицинской маски;

Пользуясь спреем, равномерно распылите его на тыльную сторону рук и ладони;

Аккуратно разотрите средство по всей поверхности рук, между пальцами, на запястьях. Особое внимание уделите обработке, если носите кольца или другие украшения;

Дождитесь, пока антисептик не высохнет;

Ни в коем случае не дотрагивайтесь до лица необработанными руками.

Напоследок напомним, что санитайзер не заменяет собой остальные правила гигиены. Пользуйтесь им, если нет возможности вымыть руки с мылом.

Источник

Вирусы и человек. Противостояние длиной в тысячелетия

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Каждый год, с завидной регулярностью, человечество сталкивается с большой и малоизученной опасностью. Непонятно откуда и по каким причинам вдруг появляются новые, неизвестные ранее виды вирусов, которые угрожают всем нам эпидемиями и гибелью большого количества людей. Так, появившийся весной 2015 года в Южной Корее ближневосточный респираторный коронавирусный синдром (коронавирус MERS) застал врасплох южнокорейские власти и заставил их принимать срочные эпидемиологические меры. Смертность от MERS составила более 35%, и, как сказано в бюллетене ВОЗ, «в настоящее время не существует ни конкретного лечения, ни вакцины от этой болезни». Поэтому интерес исследователей к вирусам вполне объясним и имеет жизненно важное значение.

Обратите внимание!

Эта работа опубликована в номинации «Лучшая статья по иммунологии» конкурса «био/мол/текст»-2015.

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

Как теперь известно ученым, вирусы окружают нас повсюду в живой природе. И каждая клетка каждого живого организма несет в себе следы прошлых встреч с ними. Генетическое разнообразие вирусов, их умение меняться и приспосабливаться, а также их огромное количество в природе — поражают. Предполагается, что общее число вирусных частиц на порядок выше количества всех клеток всех организмов на Земле [1]. Миллионы лет назад ретроэлементы и ретровирусы участвовали в эволюции, выступая в качестве генетического резервуара для создания новых генов и усложнения видов. Этот вопрос подробно исследовали и нашли массу подтверждающих фактов российские генетики из Института биоорганической химии РАН (академик Е.Д. Свердлов, А.А. Буздин и их коллеги) [2, 3]. И сейчас вирусы могут выступать одним из «орудий» эволюции, регулируя численность и жизнеспособность популяций*.

* — О том, как вирусы могли участвовать в эволюции живых организмов, рассказывают статьи «Вирусные геномы в системе эволюции» и «Гигантские вирусы: 4-й домен жизни?» [4, 5].

Когда именно на Земле появились первые вирусы, наука точно сказать не может. Сегодня существует несколько гипотез происхождения вирусов. Один из самых авторитетных ученых-вирусологов, академик РАМН В.М. Жданов, особо выделяет три из них. Согласно первой, вирусы могут быть потомками бактерий или других одноклеточных организмов, претерпевших дегенеративную эволюцию. То есть бактерии или одноклеточные по каким-то причинам вместо обычного развития в сторону усложнения, потеряли часть структур и «упростились» до вирусов. Согласно второй гипотезе, вирусы появились еще до образования первых живых клеток и являются потомками древних доклеточных форм жизни. Возможно, поначалу они обладали автономностью, но затем перешли к паразитическому способу жизни, используя для своего размножения другие формы. Согласно третьей гипотезе, вирусы произошли от клеточных генетических структур — ретротранспозонов, — способных передвигаться в геномах [6].

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Новосибирские микробиологи Игорь Бабкин и Ирина Бабкина из Института химической биологии и фундаментальной медицины РАН (ИХБФМ СО РАН), исходя из результатов геномного анализа называют более близкую к нам дату возникновения вируса натуральной оспы — 3000–4000 лет назад [8]. Место возникновения — восточная Африка. Но, так или иначе, вырвавшись с африканского континента около двух тысяч лет назад, вирус оспы начал свое «черное» шествие по миру, уложив в могилу огромное количество людей на всех континентах, и просуществовал до 1980 года, когда человечество объединенными усилиями его победило. Сегодня вирус натуральной оспы под строгим контролем сохраняется в двух лабораториях: в Центре по контролю заболеваний (CDC, Атланта, США) и в Научном центре вирусологии и биотехнологии «Вектор» (Кольцово, Россия) *.

* — Это официальные хранилища, а по поводу неофициальных спекулируют и обыватели, и авторитетные вирусологи, работающие под шефством ФБР. Так нужно ли уничтожать «легальные» образцы вирусов оспы? Почему ответ на этот вопрос неоднозначен, пытается разобраться американский журналист Ричард Престон в своей документальной книге «Демон в морозильной камере» [10]. Делает он это частично через призму событий, сопутствующих знаменитой рассылке писем со спорами сибиреязвенных бактерий в 2001 году («биомолекула» в одной из врезок затрагивала эту тему). Как реагировали всевозможные государственные структуры, как шаг за шагом продвигалось расследование ФБР, что творилось в недрах главного защитника населения США от биотеррористов — USAMRIID (Форт Детрик). Автор описывает вирусы оспы и случаи, связанные с их «оживлением» и экспериментальным заражением животных, шпионские скандалы, последние вспышки натуральной оспы и историю глобальной победы над ней в конце 70-х. Однако Престон (как и некоторые компетентные герои его расследования) не страдает избытком оптимизма, небезосновательно считая, что мечта о тотальном избавлении от оспы не сбылась: хотя нам удалось истребить инфекцию в природе, «мы не смогли вырвать вирус из человеческого сердца». Основанием для этой мысли, помимо прочего, послужили сведения, подкрепляющие потенциальную возможность искусственного создания супервирусов оспы, а также. детская рука с типичными оспенными поражениями, найденная в 1999 году.

Страхи-страхами, а престонские демоны волей-неволей и на благо науки работают — по крайней мере, у нас. В конце 90-х в микробиологических кулуарах ходила байка о том, что кое-какие — не известные широкой общественности — биологические институты выжили благодаря содержимому своих холодильников: чиновников удалось «разжалобить» только страшилкой об апокалиптических последствиях отключения электроэнергии в институте. Ведь из размороженных холодильников всенепременно выскочат бациллы сибирской язвы! — Ред.

Строение вирусов и иммунный ответ организма

В поле зрения ученых вирусы попали в начале XVIII века. Тогда европейские врачи заинтересовались феноменом непроизвольной вакцинации: люди, зараженные легкой формой оспы — коровьей, — были не подвержены оспе натуральной, то есть человеческой. Прорыв в этом вопросе произошел в 1796 году, когда английский врач и ученый Эдвард Дженнер (рис. 1, справа) публично произвел первое «цивилизованное» и безопасное оспопрививание [11]. После этого прошло без малого двести лет, когда в 1892 году впервые был описан вирус. Звание первооткрывателя вирусов по праву принадлежит российскому микробиологу Дмитрию Иосифовичу Ивановскому (рис. 1, слева), который в конце XIX века сумел описать вирус, вызывающий мозаичную болезнь растения табака. И вслед за этим открытием началось лавинообразное изучение вирусов, которые не перестают нас удивлять и преподносить неожиданные сюрпризы.

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

После детального изучения вирусов, которые получили свое название от латинского слова virus (яд), стало известно, как именно они устроены. Полноценная вирусная частица — вирион — состоит из белковой оболочки (капсида) и внутреннего содержимого: нуклеиновой кислоты, «хранящей» вирусные гены (рис. 2, 3). У некоторых вирусов капсид покрыт дополнительными слоями из белков и липидов. По тому, какая именно нуклеиновая кислота содержится в вирусе, их делят на два больших вида: ДНК- и РНК-вирусы*.

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Рисунок 2. Строение вируса иммунодефицита человека (ВИЧ). Диаметр частицы ВИЧ составляет примерно 100–120 нм. gp120 — поверхностный белок, молекулы которого формируют «шляпку гриба». Именно этот белок взаимодействует с антителами и рецептором клетки-мишени (gp — гликопротеин, 120 — масса белка в дальтонах). gp41 — белок, формирующий «ножку гриба», встроенную в липидную мембрану вируса. р24 — внутренний белок, две тысячи молекул которого составляют капсид вируса (кор), имеющий форму усеченного конуса. р17 — матриксный белок, образующий слой толщиной 5–7 нм между внешней оболочкой и капсидом. Интеграза, ревертаза и протеаза — ферменты, необходимые для жизненного цикла вируса. РНК (2 копии) — хранилище генетической информации (ВИЧ — ретровирус). Генетический аппарат ВИЧ-1, связанный с нуклеокапсидным белком p7, имеет длину около 10 тыс. нуклеотидов и содержит девять генов. Рисунок с сайтов visual-science.com и «Википедии».

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Рисунок 3. Генетическая организация вируса ВИЧ-1. (+)РНК-геном вируса содержит гены, ответственные за синтез белков, выполняющих структурные, ферментативные и регуляторные функции. Это гены gag, env и pol, имеющиеся у всех известных ретровирусов и кодирующие структурные белки оболочки вируса (gag, env), а также ферменты: ревертазу, интегразу и протеазу (ген pol). Оставшиеся шесть генов — vpr, vpu, vif, tat, rev, nef — так или иначе участвуют в жизненном цикле ВИЧ-1, кодируя регуляторные белки и подавляя активность иммунных клеток. Два вида вируса иммунодефицита человека (ВИЧ-1 и ВИЧ-2) различны по составу генов: у ВИЧ-2 нет гена vpu, зато есть ген vpx. Рисунок с сайта www.zdrav.kz.

Что происходит после того, как вирус попадает внутрь организма? Уже в слизистой оболочке иммунные клетки (макрофаги) поглощают часть вирионов. Вслед за этим, когда вирус проникает в кровь, другие иммунные клетки — Т-хелперы — дают стимулирующий сигнал «убийцам» вирусов: B-лимфоцитам и Т-киллерам. Операция по уничтожению вируса переходит в следующую фазу. Активированные B-лимфоциты образуют антитела, которые находят свободные антигены вирусов и связываются с ними. Такой тандем (вирусный антиген — антитело) захватывается и уничтожается макрофагами. Те вирусы, которые сумели ускользнуть от антител и макрофагов и внедриться в клетки, уничтожаются вместе с пораженными клетками Т-киллерами. И завершающий этап иммунной реакции: клетки Т-супрессоры гасят активность иммунного ответа, прекращая агрессивные действия Т-киллеров и B-лимфоцитов, чтобы те, разбушевавшись, не уничтожили и здоровые клетки.

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

В 2008 году американские исследователи из Университета Рокфеллера открыли еще один интерферон-зависимый антивирусный механизм. Выяснилось, что интерферон стимулирует синтез белка BST-2 (тетерина), блокирующего выход вирионов из клетки [16]. Но некоторые вирусы научились обходить действие интерферона. Так, вирус Эбола (рис. 4) с помощью своего белка eVP24 не дает ядерному фактору PY-STAT1 проникнуть в ядро и запустить действие интерферона [17]. У этого вируса есть еще несколько механизмов, делающих его неуязвимым для иммунитета. Так, внутреннее содержимое вируса окружено «чехлом» из полисахаридов, благодаря чему вирус плохо распознается иммунной системой*.

* — О борьбе с вирусом Эбола с помощью моноклональных антител рассказывает статья «Вирус Эбола и макак-резус: получено новое эффективное лекарство» [18].

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Рисунок 4. Схема строения, 3D-модель и фото вируса Эбола. Рисунки с сайтов www.visual-science.com и ebolaviruspictures.blogspot.com.

Как мы видим, в идеале у здорового организма существует довольно надежная многоуровневая система защиты от проникновения всевозможных «чужаков». И действительно, все мы знаем, что встречаются люди, в силу своего крепкого здоровья устойчивые ко всяким сезонным инфекциям вроде ОРВИ или гриппа. Такой опасный агент, как вирус натуральной оспы, не убивал всех без исключения заразившихся, и большая часть заболевших выздоравливала своими силами. Среди них был и будущий глава СССР, И. Сталин, переболевший в детстве оспой. Даже лихорадка Эбола, наводящая сегодня ужас в Африке, оставляет в живых десятую часть заразившихся. И лишь по отношению к одной единственной инфекции эта система защиты оказывается бессильной в 100% случаев заражения. Ни один человек из 36,9 миллионов, инфицированных ВИЧ (данные ВОЗ на начало 2015 г.), не сможет избавиться от вируса, а заболевший СПИДом — полностью выздороветь [19].

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Почему же человечество со всем своим огромным научным и техническим потенциалом ничего не может противопоставить этой смертоносной инфекции? Проблема борьбы с ВИЧ многоуровневая и включает в себя несколько факторов. Так, неизвестно почему, но иммунная система человека вместо того, чтобы бороться с вирусом, иногда помогает ему. Этот феномен, получивший название антителозависимое усиление инфекции (ADE), был описан применительно к ВИЧ в конце 80-х годов американскими биологами из университетов Калифорнии и Вандербильта — В. Робинсоном и его коллегами [22]. Было обнаружено, что антитела, которые вырабатываются в организме в ответ на вирусную атаку, облегчают проникновение вируса в клетку (рис. 5, 6). Посредством специфического участка — Fc-области — они присоединяются к клеткам-фагоцитам и «проводят» вирус в них. Это похоже на то, как поводырь проводит плохо видящего человека в нужное место: антитело «берет за руку» вирус и заводит его в макрофаг.

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Рисунок 6. Электронно-микроскопическая фотография макрофага, инфицированного ВИЧ-1. Две темные области — многочисленные вирусные частицы, которыми «нашпигована» клетка. Рисунок из [13].

Но и это еще не все уловки в арсенале смертоносной инфекции. В нашем организме существуют специальные антиретровирусные системы, которые должны противостоять ВИЧ. Сегодня известны три таких системы: упоминавшийся выше (в связи с интерфероном) BST-2/ тетерин, а также AID/APOBEC и TRIM5-α [24]. Но, как выяснилось, все они оказываются бессильны в борьбе против ВИЧ. Вот как об этом говорит М.Р. Бобкова из Института вирусологии им. Д.И. Ивановского: «Антивирусные системы клетки, получившие название „внутреннего иммунитета“ (intrinsic immunity), пытаются бороться с вирусом, но у них это плохо получается. APOBEC модифицирует вирусную ДНК таким образом, что это приводит к ее разрушению либо неполноценности. В ответ на это вирус ВИЧ приобрел белок Vif, блокирующий функцию APOBEC. TRIM5-α у обезьян хорошо справляется с функцией преждевременного „раздевания“ РНК вируса, но только не „своего“ вида, а всех других. У человека этот белок есть, но функция его снижена, и ее недостаточно для ограничения репликации (копирования) ВИЧ. Тетерин связывает отпочковывающиеся вирусные частицы и не дает им покинуть поверхность клетки. В противодействие этому у ВИЧ есть белок Vpu, который путем связывания тетерина „освобождает“ новые частицы. Представить себе, что эти механизмы защиты от внутреннего иммунитета вирус выработал за те несколько десятилетий, что он общается с человеком, невозможно, поэтому должно быть какое-то другое объяснение».

«Другое» объяснение приводит в своей работе известный специалист по ВИЧ, микробиолог Михаил Супотницкий. По его мнению, причина того, что антивирусные системы человека бессильны против ВИЧ, носит эволюционный характер: «Почему так работают антиретровирусные системы человека? Причина, скорее всего та же, что заставляет иммунную систему человека участвовать в размножении и распространении ВИЧ — эти системы созданы самими ретровирусами» [25]. Когда-то, несколько сотен миллионов лет назад, древние ретроэлементы, от которых произошли все ретровирусы, участвовали в процессе эволюции в формировании иммунной системы позвоночных, передав для ее генов некоторые свои элементы. И потому наша иммунная система, созданная ретроэлементами, иногда может по старой памяти воспринимать вирусы как «своих».

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Также известно, что ВИЧ в своем жизненном цикле задействует множество белков организма хозяина (рис. 7). В 2008 году ученые из Гарвардской медицинской школы и Института Говарда Хьюза посредством механизма РНК-интерференции провели исследование генома человека на предмет обнаружения белков-«коллаборационистов», сотрудничающих с ВИЧ [20]. В ходе работы ими были обнаружены 273 белка, так или иначе связанных с циклом ВИЧ [26]. Но и это еще не всё. Оказалось, что наши внутренние, эндогенные ретровирусы, тихо сидящие в нашей ДНК, могут в случае надобности предоставлять «чужим» ретровирусам (в том числе и ВИЧ) свои ферменты, необходимые для вирусного жизненного цикла. То есть внутренние и внешние вирусы взаимодействуют между собой: американскими исследователями был зафиксирован феномен, когда в ответ на прием ингибиторов протеаз протеаза эндогенного ретровируса человека HERV-К компенсировала своим действием отсутствие этого фермента у ВИЧ-1 [27]. Получается такая «дружеская взаимопомощь» между вирусами. Hе случайно авторитетный вирусолог, академик РАН Е.Д. Свердлов назвал наши эндогенные ретровирусы «пятой колонной» ВИЧ [2]. В свою очередь, ВИЧ может активизировать «дремавшие» эндогенные ретровирусы: наблюдали усиление экспрессии генов ретровируса HERV-K10 у ВИЧ-инфицированных и появление в сыворотке крови таких людей вирусных частиц HERV-K [28, 29].

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Существует одна схожая особенность многих опасных вирусов, затрудняющая вакцинацию и лечение: они чрезвычайно быстро меняются. У ВИЧ это обусловлено тем, что фермент обратная транскриптаза делает массу ошибок при копировании вируса в организме — такая у этого фермента особенность. И потому вирусные копии отличаются одна от другой, и вирус становится неуловимым. Это похоже на то, как если бы полиция искала преступника по фотороботу и отпечаткам, а он каждый день менял свой облик, да еще и делал себе двойников. У других вирусов есть свои механизмы изменчивости. К примеру, два знаменитых филовируса — Эбола и Марбурга — с момента открытия изменились по составу аминокислот в некоторых белках более чем на 20%! Вирус гриппа постоянно меняется благодаря двум своим специфическим особенностям: «антигенному дрейфу» и «антигенному шифту» — мутации антигенов вируса и полной замене одного из генов* [31].

* — Разным аспектам, связанным с вирусом гриппа, биомолекула посвятила целую серию статей, первая из которых — «Гонки с вирусом: эпидемиология и экология вируса гриппа» [32].

Эпидемии «медленных» вирусов и вирусная эволюция

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

** — О строении и свойствах другого вируса, вируса гепатита А, читайте в статье «Вирус гепатита А: новое — это хорошо забытое старое» [35].

Конечно, атипичная пневмония, «птичий» грипп, коронавирус MERS и другие, неизвестные пока инфекции при определенных обстоятельствах могут вызвать эпидемии с большими человеческими жертвами. Природный резервуар «запасных» частей для вирусов огромен, и они могут складываться в опасные формы. Этот процесс носит название рекомбинация вирусов — вирусы обмениваются своими «запасными» частями (генами) друг с другом и с носителями, создавая новые виды. И именно после этого появляются новые опасные формы вирусов, о которых мы регулярно узнаем из новостных лент СМИ.

Причем больших изменений для возникновения опасной формы вируса не требуется. Так, «испанский» грипп, от которого в 1918-1920 гг. погибло более 20 млн человек, был вызван вирусом типа H1N1 (рис. 8), доставшимся человеку от птиц. В конце 90-х гг. американские ученые из Armed Forces Institute of Pathology исследовали этот вирус, выделив его из тел, похороненных на Аляске, и нашли всего лишь одно существенное изменение, сделавшее его смертельным: изменение в гене поверхностного белка — нейраминидазы [36]. В 2008 году ученые из Массачусетского технологического института — Т. Тампи и его коллеги — дополнили эти исследования, обнаружив еще две возможные мутации, которые могли сделать этот вирус «массовым убийцей»: мутации в структуре второго поверхностного белка вируса гриппа — гемагглютинина, — которые позволили ему связываться со специфическими гликанами человеческих эпителиальных клеток (рецепторами α2—6)* [37].

Что убивает все вирусы. Смотреть фото Что убивает все вирусы. Смотреть картинку Что убивает все вирусы. Картинка про Что убивает все вирусы. Фото Что убивает все вирусы

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Всё тот же научный прогресс стал причиной односторонней миграции населения из сёл и малых городов в крупные города, что привело к возникновению компактных многомиллионных поселений. Чего не было за всю длинную эволюцию человека. И такая скученность населения в крупных городах создает все условия для возникновения и распространения новых форм вирусов: ослабление иммунитета как следствие загрязненной среды обитания и стрессов и возможность скорейшего инфицирования всё новых и новых хозяев. Академик В.А. Кордюм (Институт молекулярной биологии и генетики, Киев) приводит пример с вирусом герпеса человека 7-го типа (ВГЧ-7) и цитомегаловирусом. Эти два инфекционных агента распространены повсеместно: ими инфицировано большинство населения Земли. И пока человек живет в нормальных условиях, они никак себя не проявляют. Но стоит лишь иммунитету ослабеть — вследствие стресса или других факторов — ВГЧ-7 и цитомегаловирус активизируются, еще более угнетая иммунную систему и «открывая ворота» для других, более опасных вирусов [39].

Ясно, что мы пока не до конца понимаем причины стремительной эволюции вирусов и те природные механизмы, которые способствуют этому. Очевидно, что наш современный «урбанистический» образ жизни играет в этих процессах не последнюю роль. Человек, устраивая свою жизнь с комфортом и переделывая всё вокруг на свой вкус и под свои нужды, вдруг забыл, что он обычный биологический вид и перестал жить по законам природы. А вирусы напоминают нам об этом.

Первоначальный вариант статьи был опубликован в журнале «Популярная механика» [40].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *