Что тяжелее вода или фреон
Вода или Фреон?
С 2010 года во многих странах мира принято положение регулирующее потребление озоно-разрушающих веществ. Одним из таких веществ является хлорфторуглерод – Фреон 141b. Фреон 141b используется в мировом производстве пенополиуретанов, как вспениватель.
Фреон – это газ, который не вступает в химическую реакцию у поверхности земли. Но стоит ему подняться в верхние слои атмосферы, где под действием ультрафиолетового изучения отщепляется атом хлора, который начинает превращать молекулы озона в кислород. Данное явление получило название «Озоновые дыры». Хлор может находиться в атмосфере до 120-ти лет. За это время хлор способен разрушить около 100 тысяч молекул озона. Данное явление и послужило основной причиной ограничения использования фреона 141b.
Альтернативой использования фреона 141b является вода. Представим наш взгляд на оба вспенивателя в рецептурах при производстве пенополиуретанов.
Рецептуры с использованием фреона 141b имеют ряд технологических преимуществ:
Но в сравнении с водой, фреон имеет ряд недостатков:
С 2010 года производители пенополиуретанов в России начали поиск рецептур, где вспениватель выступает вода, как альтернатива фреону 141b.
Компоненты, где вспенивателем выступает вода, обладают рядом преимуществ:
Главными недостатками водных компонентов являются:
Вывод. Вода подходит в качестве вспенивателя, но рецептуры на воде более капризны, так как менее изучены и известны в производстве пенополиуретанов.
Влияние воды на хладагент
Одним из основных источников влаги в системе холодильной установки является влажный воздух, который или остается в ней при недостаточно тщательном его удалении после вскрытия, или проникает через неплотности. Вода может также оставаться при недостаточно тщательной ее эвакуации после гидравлического испытания системы. Возможно попадание влаги при сварке или пайке соединений, причем источниками влаги являются не только продукты сгорания газа, но и флюс, применяемый при сварке. В герметичных компрессорах имеет значение выделение водяного пара из электроизоляционных материалов обмоток электродвигателя. Влага может оказаться в системе, если заполнение произведено хладагентом и маслом, содержащими повышенное количество влаги. Что касается масел, то они, как правило, гигроскопичны и при длительном хранении в открытом сосуде сорбируют водяной пар из воздуха. Наконец, возможно попадание воды вследствие появления течей в соединениях аппаратов, охлаждаемых водой.
Влияние, оказываемое влагой на работу установки, в значительной степени зависит от степени взаимной растворимости хладагентов и воды. Вещества, обладающие большим химическим сродством с водой, имеют неограниченную взаимную растворимость, например аммиак. Жидкий диоксид углерода ограниченно растворяет воду. Очень ограниченно растворяют воду все хладоны и особенно озонобезопасные. В табл. 7.1 приведены данные по растворимости воды в некоторых хладагентах при различных температурах. Для более наглядного представления о растворимости можно сказать, например, что растворимости воды в R12 при — 10°С в количестве 0,0014% соответствует содержание 14 мг воды в 1 кг жидкого хладагента.
Растворимость воды значительно уменьшается при понижении температуры. Характерно также, что хладоны, содержащие в своей молекуле атомы водорода (R21 и R22), способны растворять значительно больше воды, причем разница становится особенно резкой при низких температурах.
В системе холодильной установки вода может находиться не только в жидком, но и в парообразном состоянии, причем предельное содержание влаги в паровой фазе хладонов, не имеющих в своем составе атомов водорода, значительно больше, чем в жидкой. Так, в паре R12 может находиться в состоянии насыщения водяного пара больше по массе, чем растворяется воды в жидком хладагенте при той же температуре. У водородосодержащих хладонов содержание влаги (в единице массы) в паровой фазе меньше, чем в жидкой. Если количество воды в хладоне превышает предельное содержание ее в жидкой и паровой фазах, т. е. когда и в жидкой фазе растворено предельное количество воды и паровая фаза насыщена водяным паром, то избыточная свободная вода находится в жидком хладоне в виде мелких капель.
Одной из причин неполадок, связанных с наличием в системе влаги, является замерзание нерастворенной воды при дросселировании хладагента. Особенно большое значение имеет это явление в малых автоматизированных установках, в которых образовавшиеся частицы льда при малых диаметрах отверстий вентилей, сопел, капиллярных трубок забивают проходное сечение дроссельных устройств и нарушают режим работы установки.
Присутствие воды в хладагентах способствует коррозии металлов. Даже небольшие примеси воды способствуют образованию слабых кислот или щелочей, обладающих определенной химической активностью. Так, при наличии воды аммиак вызывает коррозию цинка, алюминия, меди и ее сплавов (за исключением фосфористой бронзы), R12 — коррозию латуни и сплавов магния (при его содержании более 2%), R22 — коррозию сплавов магния и алюминия. В герметичных агрегатах происходит постепенное разрушение электрической изоляции обмоток электродвигателя. Кроме уменьшения долговечности машин явление коррозии вызывает и другие последствия. Продукты коррозии смываются хладагентом и забивают отверстия дроссельных устройств, забивают фильтры. На теплопередающих поверхностях продукты коррозии образуют слой, представляющий собой дополнительное термическое сопротивление, и тем самым ухудшают теплопередачу. Присутствие воды в системе способствует образованию и выделению густых маслянистых осадков, желеобразных и твердых, засоряющих фильтры дроссельных устройств.
В хладоновых установках в присутствии нерастворенной воды может возникнуть специфическое явление, называемое омеднением стальных поверхностей. При наличии в системе медных частей, соприкасающихся с хладоном, растворенном в масле, медь вступает в химическую реакцию с раствором и выпадает в виде слоя на стальных неоКисленных поверхностях. В частности, слой меди образуется на шейках вала, уменьшая зазор в подшипниках, на клапанных пластинах, вызывая нарушение герметичности. По этим причинам предъявляются высокие требования к содержанию влаги в хладагентах с ограниченной растворимостью воды, причем эти требования повышаются для установок, работающих при низких температурах. Согласно техническим условиям на поставку количество воды в хладагенте не должно превышать допустимого значения.
Гранулированный сорбент засыпают в сетчатый цилиндр, препятствующий уносу гранул и задерживающий механические загрязнения. Это устройство называют фильтром-осушителем при небольшой вместимости (до 2 дм3) и осушителем (осушительным патроном) при большей вместимости.
Осушитель устанавливают на жидкостном трубопроводе до регулирующего вентиля. В малых автоматизированных установках осушитель 1 может быть постоянно включен в работу (рис. 7.13, а), а в средних и крупных установках (рис. 7.13, б) осушитель 1 включают в работу периодически, главным образом, в первые 10-15 дней после первоначального пуска установки, а затем по мере надобности при появлении признаков наличия влаги в системе. Поэтому осушитель 1 включают в обводной мост с запорными вентилями. Силикагель и синтетические цеолиты являются довольно хрупким материалом, разрушающимся в процессе работы. Твердые частицы адсорбента вызывают абразивный износ деталей компрессора. Поэтому после осушителя ставят фильтр тонкой очистки 2. Формованные цилиндры из цеолита БФ-60, БФ-120 разрушаются значительно меньше, чем насыпная масса из гранул.
О различиях фреоновых и водных систем (подробно)
Именно полиол отвечает за образование пены при соприкосновении со вторым компонентом, который называют «изоционат». Таким образом упрощенная формула образования пенополиуретана выглядит так:
полиол+изоционат=ППУ пена
Сравнительная характеристика этих двух методов (на основе данных компании Химтраст) приведена в таблице:
На 10-15% дороже отечественных водных систем
На 40-50% дороже
импортных водных систем
На 10-15% дешевле отечественных фреоновых систем
На 40-50% дешевле импортных фреоновых систем.
Есть летние и зимние фреоновые системы.
Летние системы можно напылять при температурах от +10°С до +30°С. При более высоких температурах фреон может вскипеть.
Водные системы бывают только летними.
Напыление возможно при температуре от +10°С до +40°С.
Зимних водных систем для напыления ППУ при низких температурах, по очевидной причине, не существует.
Фреон более чувствителен к перепадам температур, частично улетучивается при хранении. В жаркую погоду бочки, хранящиеся на улице, могут вздуваться.
Перепады температур не критичны при хранении. Даже промерзшие компоненты можно разморозить и переработать.
Адгезия к основанию и между слоями лучше, чем у водных систем.
Адгезия к основанию и между слоями хуже, чем у фреоновых систем.
На 10-15% ниже, чем у водных систем. Следовательно и напылять ППУ можно слоем на 10-15% меньше, чем в случае использования водных систем.
На 10-15% выше, чем у фреоновых систем, поэтому толщину теплоизоляции нужно делать на 10-15% больше.
Нет фреоновых систем для напыления ППУ плотностью ниже 25 кг/м³
Есть водные системы для напыления плотностью 8-20 кг/м³
Фактическая плотность готовой пены для систем с плотностью 30 кг/м³ при температуре окружающей среды 25-30ºС и нанесенная двумя слоями по 2,5 см. на установке высокого давления.
33-36 кг/м³ или 13-14 кубов с 1 комплекта весом в 470 кг при толщине слоя 5 см.
40-43кг/м³ или 10,9-11,75 кубов с 1 комплекта весом в 470 кг. при толщине слоя 5 см.
В то же время, фреоновые системы, как правило, не обеспечивают звукоизоляцию и, по неподтвержденным данным, способны негативно повлиять на состояние озонового слоя земли.
При выборе конкретной системы специалисты рекомендуют исходить из того, какая стоит задача. И она не сводится к решению того, на какой основе должен быть используемый материал. Скорее всего делать выбор придется не между водной и фреоновой системой, а закрытоячеистым и открытоячеистым ППУ.
Где используется пенополиуретан с закрытой ячейкой, где с открытой, а где можно использовать комбинированное напыление, читайте в нашей следующей статье.
Жидкости с низкой температурой кипения (хлорфторуглероды, сокращенно ХФУ) или ГХФУ (гидрофторхлоруглероды). Во время реакции полиола с изоционатом выделяется тепло, хлорфторуглероды закипают от повышения температуры, вспенивают композицию, и остаются в ячейках в газообразном состоянии. ГХФУ (гидрофторхлоруглероды) могут применяться в сочетании с водой.
Выбираем систему охлаждения ЦОДа: фреон или вода?
Как и любая сложная техническая область, тема теплоотвода в ЦОДах обросла большим количеством мифов и предубеждений.
Первая группа мифов говорит о том, что «вода представляет опасность для ИТ-оборудования».
Миф 1: водяное охлаждение – это когда вода внутри сервера
Это не совсем верно: существуют серверные платформы с прямым охлаждением при помощи воды, но это пока экзотика. Наиболее распространенный способ отвода тепла от ИТ-оборудования – при помощи принудительно прогоняемого через его радиаторы воздуха. Описанные выше способы отвода тепла описывают процесс на уровне ЦОДа в целом, а не на уровне единиц ИТ-оборудования.
Миф 2: вода в серверном помещении – это недопустимый риск
Существует множество технических решений по недопущению попадания воды в ИТ-оборудование при протечке. Для этого надо проработать возможные сценарии аварий и принять соответствующие проектные решения.
Вторая группа мифов: водяная система очень дорогая и сложная в эксплуатации, а фреоновая привычнее и эффективнее.
Миф 3: водяная система – это слишком сложно и дорого
Необходимо рассматривать конкретные случаи. Возможна ситуация, когда наоборот – фреоновая система будет слишком сложной и дорогой, особенно если рассматривать не только строительство ЦОД, но и его обслуживание.
Миф 4: водяное охлаждение – это для больших ЦОДов
Да, у вас может быть обычная серверная комната на 20 стоек. Но необходимо произвести оценку, ведь может оказаться, что для этой серверной потребуются 20 отдельных фреоновых кондиционеров, поэтому водяная система будет выгоднее при эксплуатации.
Третья группа мифов порождена незнанием устройства систем охлаждения.
Миф 5: водяная система питается от магистрали водоснабжения
Нет, водяные системы питаются от чиллера специально подготовленной очищенной охлажденной водой или водно-гликолевой смесью с добавлением ингибиторов коррозии.
Миф 6: можно использовать бытовой фреоновый кондиционер
Идея «дуть на оборудование холодом» от бытового кондиционера – следствие неправильного понимания задачи. Необходимо не просто подавать охлажденный воздух на оборудование, а отводить избыточное тепло, чтобы обеспечить соответствующие температурные условия эксплуатации. При этом охлажденный воздух выступает всего лишь в роли теплоносителя для перемещения определенного количества теплоты из помещения ЦОДа на улицу. Как известно из школьного курса физики, количество теплоты равняется удельной теплоемкости, помноженной на массу вещества и на разницу температур до нагрева и после нагрева. Если масса вещества (объем подаваемого из кондиционера воздуха) будет значительно меньше необходимого, то не спасет даже понижение температуры воздуха. Бытовые кондиционеры имеют в несколько раз меньшую производительность подачи воздуха, чем прецизионные. К этому можно добавить, что часть их мощности тратится на осушение воздуха (для создания комфортных условий для человека) и что они имеют малый ресурс (не предназначены для постоянной работы круглые сутки во все времена года).
Нам, людям третьего тысячелетия, ни к чему прозябать среди мифов и заблуждений. Мы можем оценить ситуацию в свете знаний. Ограничимся основными свойствами обоих вариантов, и рассмотрим их более внимательно.
Преимущества фреоновых систем
Относительная простота системы
По сути, фреоновый кондиционер, как и домашняя сплит-система, состоит из двух половинок: собственно кондиционера, устанавливаемого в охлаждаемом помещении, и внешнего блока, который размещается на улице. Обычно в самом кондиционере расположены вентиляторы, охлаждающий воздух теплообменник (испаритель), компрессор и управляющая электроника. Дополнительно в кондиционере могут быть пароувлажнитель, поднимающий влажность воздуха до требуемой, воздушные фильтры, и т. д. Внешний блок прецизионного кондиционера устроен совсем просто: только теплообменник, отдающий тепло в окружающий его воздух, вентилятор, и автоматика, этим вентилятором управляющая.
Соединяются кондиционер и его внешний блок парой медных трубок небольшого диаметра (обычно 15-20 миллиметров, редко больше), которые могут быть проложены даже в стесненных условиях.
Длительность монтажа одного кондиционера обычно не превышает двух-трех дней. Вне зависимости от мощности кондиционера принцип его действия не изменяется: и маленький потолочный аппарат на 7 кВт, и огромная 200-киловаттная машина устроены, в принципе, одинаково.
Полная независимость кондиционеров друг от друга
Если нужны несколько кондиционеров, они устанавливаются как независимые друг от друга агрегаты. Каждому кондиционеру – свой внешний блок с отдельными трубопроводами. Из этого свойства вытекают следующие дополнительные преимущества. Первое – высокая надежность резервированной системы: у нескольких кондиционеров, работающих в одном помещении, нет общих узлов и блоков, они полностью независимы, и, значит, нет единой точки отказа. Выход из строя одного кондиционера никак не влияет на работу остальных. Второе преимущество – простота расширения системы: во многих случаях для увеличения производительности системы в целом можно просто установить в этом же помещении еще один кондиционер.
Меньше начальные капитальные вложения
Как справедливый итог вышеперечисленных (и многих других) объективных свойств, фреоновая система оказывается и в закупке, и в монтаже, и в пуско-наладочных работах значительно (иногда – в два-три раза) дешевле, чем водяная с аналогичной производительностью. Простота прокладки медных труб и установки внешнего блока, полная независимость кондиционеров друг от друга и несложная процедура пусконаладки позволяют разворачивать системы охлаждения достаточно оперативно и сравнительно недорого.
Недостатки фреоновых систем
Сравнительно малая допустимая энергетическая плотность ЦОД
К сожалению, «удельная мощность одного кондиционера» получается не очень большой. Особенно, если рассматривать самый эффективный и популярный в настоящее время конструктив: компактные внутрирядные кондиционеры, устанавливаемые в рядах с серверными шкафами. Мощность в 15-20 кВт для корпуса шириной 600 мм (размером как обычный серверный шкаф) и не более 10-12 кВт для компактного 300-миллиметрового корпуса – практически предел для фреоновых машин. Есть отдельные экземпляры, мощность которых немного выше «средней по рынку», но это достигается уплотнением внутренней компоновки, как следствие – снижением ремонтопригодности аппарата.
В итоге высокая мощность системы может быть достигнута только установкой большого количества кондиционеров: каждый со своим внешним блоком, со своими трубопроводами… В следствие этого использование фреоновых кондиционеров в ЦОД средней плотности, с удельной нагрузкой на стойку от 7 до 10 кВт, представляется затруднительным, а при удельной нагрузке в 15 кВт и более – почти невозможным.
Каждому внутреннему блоку должен соответствовать отдельный внешний блок
Малая гибкость системы
В варианте охлаждения с подачей воздуха через фальшпол мощность одного кондиционера может достигать величин в 200 и более кВт, это уже довольно крупный агрегат, размером в несколько метров и весом в пару-тройку тонн. С мощностью порядок, но как ее регулировать? У фреоновой холодильной машины есть такой параметр, как минимальная нагрузка: если 100-киловаттный кондиционер заставить удалять из ЦОД всего 5 кВт тепла, то он просто не справится с этой задачей. Слишком маленькая тепловая нагрузка не сможет испарять то количество фреона, которое достаточно для нормальной работы цикла работы холодильной машины. Производители идут на разные ухищрения, чтобы побороть эту проблему, например, оснащают кондиционеры встроенными нагревателями, которые «донагружают» кондиционер дополнительным теплом. Получается абсурдная ситуация: чтобы охладить воздух – надо сначала нагреть воздух, потратив электричество не только на охлаждение, но и на нагрев. Что подводит нас к следующему недостатку фреоновых систем.
Низкая энергоэффективность
Грубо говоря – КПД любого кондиционера составляет 200 и более процентов: для того чтобы «сдуть» с оборудования, например, 100 кВт тепла, кондиционер потребляет от сети не более 50 кВт электричества, а зачастую и еще меньше. Однако на практике все не так хорошо: с учетом проблем регулирования мощности и некоторых «накладных расходов» на охлаждение оборудования фреоновыми кондиционерами вы потратите почти столько же электроэнергии, сколько потребляет само охлаждаемое оборудование. Но, как говорят в «магазине на диване», и это еще не все. Если мы попробуем построить график потребляемого тока во времени, то мы увидим, что электричество потребляется непостоянно, и неравномерно. На графике будут периоды времени, когда потребление мало (в эти моменты времени работают только вентиляторы, а фреоновый компрессор простаивает). Также на графике мы увидим периоды с «нормальным» энергопотреблением (работают и вентиляторы, и компрессор).
Кроме того, на графике будут кратковременные, но очень неприятные моменты с резкими и значительными бросками потребляемого тока. Это моменты включения компрессора после простоя, и броски эти называются «пусковой ток». Величина пускового тока обычно очень ощутима, и превышает номинальное значение в 10-15 раз. Это означает, что все составляющие в системе электропитания кондиционера должны выдерживать кратковременную, но значительную перегрузку. Например, если кондиционер питается от источника бесперебойного питания – этот ИБП должен выдержать перегрузку в 1000% в течение 5-15 секунд. Таких ИБП, к сожалению, не бывает, и для обеспечения работоспособности всей системы приходится использовать заведомо более мощный (переразмеренный) ИБП, который стоит «переразмеренных» денег. То есть фреоновая система предъявляет особые требования к смежной системе, значительно удорожая ее.
Отсутствие фрикулинга
Кроме того, что фреоновый кондиционер потребляет много электроэнергии – следует отметить тот факт, что он потребляет ее постоянно. Круглый год. А если на улице зима и кругом полным-полно «бесплатного» холодного воздуха – фреоновый кондиционер может потреблять еще больше электричества, потому что он вынужден подогревать свой внешний блок, «чтобы не замерз». Увы, нет никаких возможностей для экономии за счет природы.
Сложности ремонта
И о ремонте. Если из трубы капает вода, то труба обычно мокрая, а под трубой лужа. Это очень упрощает поиск места протечки: где лужа – там и течет. Фреон же течет только при давлении в десятки атмосфер, поэтому при малейшем повреждении трубы он просто незримо улетучивается. Поиск места протечки – занятие нетривиальное и занимает много времени. Для восстановления работы системы во многих случаях требуются остановка кондиционера, удаление хладагента и полная перезаправка после ремонта.
Преимущества водяных систем
Рассмотрев фреоновые кондиционеры, обратим свой взгляд на более сложный и дорогой вариант: водяную систему. Здесь уже трудно говорить об отдельных кондиционерах (представить себе одинокий водяной кондиционер можно, но сложно), будем рассматривать систему из нескольких аппаратов, работающих сообща. Начнем опять с преимуществ.
Фрикулинг и энергоэффективность
Основная причина существования водяных кондиционеров в ЦОДе – это, конечно же, высокая экономическая эффективность, обусловленная как высокой эффективностью системы в целом, так и возможностью «бесплатного» использования «уличного холода» в течение нескольких месяцев в году. В условиях средней полосы России даже типовая система с водяными кондиционерами, работающая в «обычном» температурном режиме и не «заточенная» специально под высокую энергоэффективность, позволяет «бесплатно» охлаждать ИТ-оборудование в течение 4-5 месяцев (когда температура воздуха на улице отрицательная). С применением некоторых технологических хитростей период работы фрикулинга можно увеличить до 7-8 месяцев. Потребление электроэнергии системой кондиционирования в режиме фрикулинга крайне невелико. Например, 100-киловаттная система будет потреблять около 1 кВт на насосы, перекачивающие теплоноситель, приблизительно 3 кВт на вентиляторы, обдувающие теплообменник на улице, и около 12 кВт съедят вентиляторы в кондиционерах. Итого, «условный КПД» составляет приблизительно 600%, а не 200, как у фреоновых систем.
Большая допустимая энергетическая плотность ЦОДа
В отличие от фреонового кондиционера, водяной устроен очень просто: у него внутри нет ни компрессора, ни сложной системы регулирования давления рабочего вещества, ни множества трубок и клапанов… По сути своей, водяной кондиционер – это просто теплообменник с вентиляторами, прокачивающими через него воздух. Освободившееся от сложной начинки место не пропадает даром: его занимает теплообменник, который заметно больше, чем во фреоновом аппарате. А чем больше теплообменник, тем мощнее кондиционер, при прочих равных. То есть в том же размере. Современный внутрирядный водяной кондиционер мощностью 60 кВт может быть собран в корпусе размером в половину серверного шкафа: шириной 300 мм. Благодаря такой компактности и высокой «удельной мощности» водяные кондиционеры позволяют строить «энергетически высокоплотные» ЦОДы с удельной нагрузкой на серверный шкаф в 15-20 кВт и выше, не занимая кондиционерами места больше, чем ИТ-оборудованием.
Возможность выбора
Вспомним, что является источником холода для водяного кондиционера: очень обобщенно говоря – это «труба с холодной водой» (кстати, хоть мы и говорим «вода», в нашем климате под этим словом обычно подразумевается незамерзающая смесь, антифриз). Если система построена правильно, от потребления воды одним аппаратом работа всех остальных кондиционеров никак не зависит. Следствием этого является принципиальная возможность организовать систему таким образом, чтобы «на одной трубе сидели» и мощные кондиционеры для машинного зала ЦОД, и менее производительные кондиционеры для зоны ИБП, и совсем небольшие аппараты для вспомогательных помещений – таких, как электрощитовая, коммутационная, и т. п.
Небольшое количество «внешних блоков»
А откуда в этой трубе, собственно, появляется холодная вода? Воду охлаждает холодильная машина, «чиллер». По принципу действия чиллер очень похож на фреоновый кондиционер, только охлаждает он не воздух, а жидкий теплоноситель. А сколько должно быть в системе чиллеров? Сколько угодно, начиная от одного. Да-да, если мощность холодильной машины достаточна для работы всех кондиционеров, то машина может быть всего одна на любое число кондиционеров. Правда, обычно чиллеров все-таки несколько. Это делается для повышения гибкости, надежности и обеспечения поэтапного развития системы. Но два, три, пять чиллеров – это не десяток, два, или более внешних блоков. ЦОД не похож на елку, увешанную игрушками – и это хорошо.
Нет ограничений по удалению чиллеров от кондиционеров
Одна из проблем фреонового кондиционера – это небольшое расстояние от кондиционера до его внешнего блока. А как далеко можно установить чиллер? Все определяется только производительностью насоса, перекачивающего теплоноситель, и «потерями холода» (нагревом воды «по дороге» от чиллера к кондиционерам) из-за неидеальной теплоизоляции. Но это преодолеваемые сложности, поэтому вполне возможна установка холодильных машин на кровле многоэтажного здания, в дальнем углу территории, и в любом другом удобном месте. Встречаются здания, в которых фреоновые кондиционеры установить в принципе нельзя, а водяные системы в таких условиях вполне работоспособны.
Простое обнаружение протечек и оперативный ремонт магистралей
Как можно обнаружить, что вода уходит из трубы? По падению давления в системе. А как найти место утечки? Визуально! В большинстве случаев не нужны приборы – течеискатели, нет необходимости отключать систему и проводить длительный поиск места утечки. Более того, при наличии оборудования аварийной подпитки водяная система кондиционирования при незначительных утечках может функционировать достаточно долго, чтобы ремонт из экстренного превратился в плановый. Методика ремонта, кстати, зависит от выбранного материала трубопроводов, и в некоторых случаях он возможен без отключения системы. А если предусмотреть резервные трубопроводы, то никакая протечка не станет губительной и не приведет к остановке ЦОДа. Да, в чиллере есть фреон, и он тоже может улетучиться. Но чиллер является комплектным устройством, которое приходит с завода заправленным фреоном и маслом, поэтому вероятность утечки не очень велика.
Недостатки водяных систем
Конечно же, ничего нельзя получить бесплатно. Даже если не упоминать такой недостаток водяной системы, как значительные капитальные затраты на первоначальном этапе (увы, стоимость оборудования и монтажных работ могут превышать аналогичные показатели для фреоновых систем в два и более раза), есть и другие проблемы. О которых конечно, нельзя не упомянуть.
Наличие воды в машинном зале ЦОД
На самом деле – вода в том или ином количестве присутствует в любом ЦОДе. Это и дренаж конденсата из кондиционеров, и отопление в смежных помещениях, есть также риск протечки крыши или водопровода, и т. д. Но в системе кондиционирования вода находится под давлением, которое хоть и невелико (обычно 2-3 атмосферы), но все-таки увеличивает риск протечки и ускоряет вытекание воды через поврежденный трубопровод. В ЦОДе с водяным кондиционированием обязательно нужно предусматривать дренаж воды из-под фальшпола и принимать усиленные меры по гидроизоляции перекрытий и даже стен.
Проблемы с работой на малой нагрузке
Чиллер является фреоновой холодильной машиной, и он, к сожалению, не избавлен от такого недостатка, как неспособность работать со слишком низкой нагрузкой. А поскольку чиллеры обычно довольно мощные – величина минимально допустимой тепловой нагрузки может быть весьма значительной. Поэтому новый ЦОД придется сразу нагружать хотя бы на 30% от мощности единичного чиллера… или запускать в работу осенью: в режиме фрикулинга проблем с минимальной мощностью нет.
Место для установки чиллеров
Расширение ассортимента эксплуатируемого оборудования
Ну и, конечно, гидравлика. Насосы, теплообменники, запорная арматура – все это приведет к тому, что в штате ЦОД кроме электрика, дизелиста, и холодильщика придется завести еще и сантеника-гидравлика. Кстати, все трубы придется делать сразу, и на полную мощность, каким бы ни был первый пусковой комплекс.
Что же в итоге выбрать, «воду» или «фреон»? Поскольку это инженерная задача, ее следует решать, учитывая все параметры строящегося объекта. Вот экспертное мнение: для каждого из реальных случаев существует оптимальное решение, и нет единого рецепта для всех, поэтому выбору архитектуры системы охлаждения необходимо уделять особое внимание, проводя вариантную проработку с обязательным привлечением специалистов. Предварительную оценку «за» и «против» можно сделать при помощи таблицы, приведенной в таблице.
Условия | Ответ |
---|---|
Расчетная энергетическая плотность ниже чем 10 кВт на каждый ИТ-шкаф. | Да / нет |
Количество ИТ-шкафов в серверной или ЦОДе не превышает 10 шт. | Да / нет |
На расстоянии не более 25 м (по трассе) и на уровне ЦОДа (серверной), есть место для размещения внешних блоков (конденсаторов) кондиционеров. | Да / нет |
Нет режима жесткой экономии электроэнергии. | Да / нет |
В помещении машинного зала отсутствует возможность монтажа фальшпола. | Да / нет |
Тепловая нагрузка в первые месяцы эксплуатации ЦОД будет менее 10% от полной мощности. | Да / нет |
Существуют проблемы с правильной эксплуатацией систем отопления и водоснабжения. | Да / нет |
Легче купить мощный ИБП, чем усложнять систему охлаждения? | Да / нет |
Фрагментарное отключение системы кондиционирования не повлияет на работу основных систем ЦОД. | Да / нет |
Нет четкого понимания, какими темпами будет развиваться ЦОД и как долго он будет эксплуатироваться до первого расширения? | Да / нет |
Стоит задача уменьшения капиталовложений именно на первом этапе? | Да / нет |
Если ответов «да» получилось значительно больше, чем «нет», то вашему ЦОД вполне подойдет фреоновая система. Если ответов «нет» получилось больше, чем «да», рекомендуем присмотреться к водяной системе. Однако точный рецепт все-таки подскажет специалист, когда увидит ваш ЦОД «вживую», его помощью ни в коем случае пренебрегать не стоит.
Олег Сорокин,
эксперт по направлению ЦОД компании ICL-КПО ВС