что такое угловая засечка
Прямая угловая засечка
Прямая угловая засечка используется когда на местности неудобно или невозможно измерить длины сторон, или когда дополнительная точка находится на значительном расстоянии от исходных пунктов.
Прямая угловая геодезическая засечка заключается в том, что по известным координатам двух точек (например точек А и В) и измеренных при них углов α и β вычисляют координаты третьей точки N.
Решение прямой угловой засечки проще всего выполнить по формулам Юнга:
Вычисления удобно выполнять в таблице:
Для контроля правильности решения прямой угловой засечки по координатам точки B и полученным координатам точки N вычисляют координаты точки A, которые должны быть равны исходным координатам:
Пример решения прямой угловой засечки
Дано:
Найти:
1) вычисляют угол γ:
2) в таблицу записывают значения углов α, β и γ и координаты точек A и B;
3) вычисляют котангенсы углов α, β и γ и переносят их в таблицу:
Таблица решения прямой угловой засечки
4) по приведенным формулам вычисляют координаты точки N:
5) выполняют контроль правильности решения прямой угловой засечки, вычисляя координаты точки A, которые должны быть равны исходным координатам:
Таким образом мы получили координаты точки A, которые равны заданным, следовательно решение правильное.
Длины сторон A-B, B-N и A-N можно получить по координатам точек A, B, N решая обратную геодезическую задачу.
Для надежного контроля определения координат третьего пункта, на практике используют многократную прямую угловую засечку с трех и более исходных пунктов.
Прямую угловую засечку также можно решать по формулам Гаусса (по дирекционным углам направлений).
Основы геодезии
О геодезии и разный полезный материал для геодезистов.
Прямая угловая засечка
Сначала рассмотрим так называемый общий случай прямой угловой засечки, когда углы β1 и β2 измеряются на двух пунктах с известными координатами, каждый от своего направления с известным дирекционным углом (рис.2.6).
Исходные данные: XA, YA, αAC,
XB, YB, αBD
Графическое решение. От направления AC отложить с помощью транспортира угол β1 и провести прямую линию AP; от направления BD отложить угол β2 и провести прямую линию BP ; точка пересечения этих прямых является искомой точкой P.
Аналитическое решение. Приведем алгоритм варианта, соответствующий общему случаю засечки:
для линии AP Y – YA= tgα1 * ( X – XA ),
Частным случаем прямой угловой засечки считают тот случай, когда углы β1 и β2 измерены от направлений AB и BA, причем угол β1 – правый, а угол β2 – левый (в общем случае засечки оба угла – левые) – рис.2.7.
Решение прямой угловой засечки методом треугольника соответствует частному случаю засечки. Порядок решения при этом будет такой:
1. решить обратную задачу между пунктами A и B и получить дирекционный угол αAB и длину b линии AB,
2. вычислить угол γ при вершине P, называемый углом засечки, (2.19)
3. используя теорему синусов для треугольника APB: (2.20)
Для вычисления координат X и Y в частном случае прямой угловой засечки можно использовать формулы Юнга: (2.22)
От общего случая прямой угловой засечки нетрудно перейти к частному случаю; для этого нужно сначала решить обратную геодезическую задачу между пунктами A и B и получить дирекционный угол αAB линии AB и затем вычислить углы в треугольнике APB при вершинах A и B
Для машинного счета все рассмотренные способы решения прямой угловой засечки по разным причинам неудобны. Один из возможных алгоритмов решения общего случая засечки на ЭВМ предусматривает следующие действия:
и совместное решение этих уравнений: (2.27)
4. перевод координат X’ и Y’ из системы X’O’Y’ в систему XOY: (2.28)
Так как Ctgα2′ = – Ctgγ и угол засечки γ всегда больше 0, то решение (2.27) всегда существует.
Обратная угловая засечка в геодезических измерениях
Засечкой называют относительно простой метод вычисления координат некоторой точки посредством измерения на ней углов и расстояний по направлению на уже закрепленные на местности контуры.
К ней достаточно часто прибегают в различных геологических, строительных и инженерных работах за счет ее простоты и экономичности. На практике обратная засечка чаще всего используются для вычисления координат пунктов геодезической сети, выноса в натуру проектных точек и т.д.
Опытный геодезист сможет без труда провести нужные измерения при помощи теодолита, тахеометра или любого другого прибора всего за пару минут.
Виды засечек
В зависимости от местности и способов построения сетей сгущения в геодезии существует два основных вида привязки к опорным пунктам:
По способу же построения геодезическая засечка бывает:
В геодезии чаще всего прибегают к комбинированию прямой и обратной засечек. Кроме того, чтобы полученные результаты были наиболее достоверными, измеряют больше величин, чем нужно, а само местоположение искомых пунктов получают посредством уравнивания.
Однократная и многократная засечка
Если для определения координат берется только один исходный пункт, то такая засечка будет называться однократной, а если более трех – многократной.
В основе обратной однократной угловой засечки лежит так называемая задача Потенота, которая была названа в честь французского математика Лорана Потенота, удачно решившего ее еще в 1692 году. Ученый предложил по известным значениям трех близлежащих точек вычислять координаты искомой.
На сегодняшний день существует уже более ста вариаций ее решения, которые были предложены многими именитыми учеными, но в геодезической практике наибольшую популярность получили формулы Жана Деламбра, Кнейссля и Гаусса.
Рисунок 1. Обратная многократная засечка
Важно отметить, что достоверные данные удается получить только в тех случаях, когда искомая точка находится в пределах треугольника, который образовали исходные пункты или же вне его, но напротив одной из его вершин.
Если же искомая точка попадает в пределы окружности, проходящей через эти точки, она становится неопределяемой. Этот ключевой недостаток в задаче Потенота, именуемый опасным кругом, приводит к необходимости определения дополнительной точки.
Обратная многократная угловая засечка как раз и подразумевает определение местоположения пункта через измерения на этом самом пункте углов или направлений как минимум на четыре твердых пункта, чьи координаты установлены. Этот метод более трудоемкий, но гарантирует надежный контроль результатов измерений. При обработке данных используют метод Гаусса-Ньютона, который в геодезии также называют параметрическим.
Способ Деламбра
Решение обратной засечки при помощи этого способа выполняется в такой последовательности:
Способ Кнейссля
Аналогично способу Деламбра последовательность формул при решении задачи обратной геодезической засечки по Кнейсслю будет иметь следующий вид:
\(\Delta x_<1-P>=c\cdot \Delta y_<1-P>\)
\(y_
=y_<1>+\Delta y_<1-P>\)
Если данное условие соблюдено, то итоговое значение координат берется как среднее арифметическое значение из результатов двух решений.
Уравнивание при помощи параметрического способа
Под определение обратной многократной угловой засечки попадает как совокупность простых однократных измерений, так и просто большое количество избыточных. Однако в обоих случаях необходимо уравнивание, которое выполняется по измеренным углам и направлениям.
К примеру, неизвестные \(x_
\) и \(y_
\) – координаты точки Р, которые в данном способе будут представлены в качестве параметров. Для этого их представляют в виде приближенных значений \(x_<0>\), \(y_<0>\) и поправок к ним \(δх\) и \(δу\).
В приведенном уравнении \(x_<0>\) и \(y_<0>\) – результаты обработки однократных засечек, а \(δх\) и \(δу\) получают через уравнивание методом наименьших квадратов параметрическим способом с применением дифференциальных формул.
Этот метод подразумевает применение не только параметрического, но и коррелатного способа. Они дают одинаковые результаты, но отличаются по объему вычислений.
Однако в геодезической практике целесообразнее применять параметрический способ, поскольку при любом количестве избыточных измерений число нормальных уравнений будет аналогично числу неизвестных. При этом каждое неизвестное будет представлено в виде суммы приближенного значения и его поправки.
Сферы применения
Обратная угловая засечка нашла широкое применение в строительстве высотных зданий и сооружений, вроде опорных конструкций для мостов и дымовых труб. Кроем того, она позволяет быстро построить строительную сетку или определить местоположение точки в пространстве. В геодезии ее нередко используют в трилатерации и триангуляции.
Нельзя также не упомянуть ее огромного практического значения в навигации и военном деле. В частности, засечка по обратным дирекционным углам используется для топографогеодезической подготовки командно-наблюдательного пункта и позиции ведения огня.
Способы разбивочных работ
Способ прямой и обратной угловых засечек. Чаще всего эти способы применяют для выноса недоступных точек, а также точек, находящихся на значительных расстояниях от геодезической основы.
В способе прямой угловой засечки (см. рис. а) положение точки М определяют с исходных пунктов А и В геодезической основы построением в каждой из них горизонтальных углов β1 и β2, которые являются разбивочными элементами. Указанные углы строят на местности по правилам, изложенным в § 88. В данной схеме целесообразно использовать одновременно два теодолита. При этом положение проектной точки фиксируют по команде двух наблюдателей при положениях КЛ, а затем – при положениях КП. После фиксирования среднего положения точки М выполняют контрольное измерений углов β1 и β2.
Необходимо иметь в виду, что величина угла γ при точке М не должна быть малой и слишком большой. Оптимальным углом, при котором вынос точки может быть выполнен с меньшей погрешностью, является γ ≈109 0 − 110 0 при примерно равных расстояниях от исходных точек до точки М. То есть следует стремиться обеспечить симметричную схему построения точки М. Кроме того, для повышения точности построения проектной точки, а также для контроля её построения, вынос проектной точки на местность выполняют часто с двух базисов геодезической разбивочной основы.
Во многих случаях бывает сложно из одного приема вынести точку М с заданной точностью в её проектное положение. В таких случаях используют способ замкнутого треугольника. Вынос точки осуществляют последовательными приближениями. Для этого с максимально возможной точностью выполняют построение точки М, затем несколькими приёмами измеряют все углы треугольника, уравнивают углы и вычисляют координаты точки М из решения по формулам прямой угловой засечки. Полученные координаты сравнивают с проектными и при недопустимых отклонениях в их значениях определяют поправки (редукции) в положение точки М и смещают последнюю в проектное положение. Для контроля снова измеряют углы и выполняют аналогичные вычисления.
Вынос проектной точки способами прямой и обратной угловых засечек: а) способ прямой угловой засечки; б) способ обратной угловой засечки
Вынос на местность проектной точки способом полярных координат
Вынос на местность проектной точки способом проектного полигона
Метод последовательных приближений используют и в способе обратной угловой засечки (см. рис. б). Предварительно точку М выносят на местность и измеряют при ней углы β1 и β2. По формулам обратной угловой засечки определяют координаты точки М и сравнивают их с проектными. При необходимости положение точки М редуцируют на величины отклонений по координатам Х и Y, точку М фиксируют в положении М2 и снова уже в новой точке измеряют горизонтальные углы β а затем вычисляют координаты новой точки М. Все указанные действия выполняют до тех пор, пока задача качественного построения проектной точки не будет решена.
Способ полярных координат используют в тех случаях, когда проектные точки находятся сравнительно недалеко от точек геодезической основы. При этом предпочтительно, чтобы расстояния до них не превышали длины мерного прибора (ленты или рулетки).
На местности от исходного направления АВ (см. рис.) строят проектный угол β и проектное расстояние d, которые в данном способе являются разбивочными элементами.
Проектная точка может находиться далеко от точек геодезической основы или не может быть вынесена по техническим условиям способами угловой засечки. В таких случаях к точке прокладывают полигонометрический ход (см. рис.), используя для этого последовательно расчётные проектные углы и проектные расстояния. Данный способ называют способом проектного полигона.
По двум ходам от базисной линии АВ геодезической основы получают два положения точки М из решения ходов (1) и (2). В качестве первого приближения вычисляют средние значения координат проектной точки. Затем в полученной точке М измеряют угол βМ и линии d3 и d4 и вычисляют координаты точки М в общей схеме замкнутого полигона. Если координаты точки М будут значительно отличаться от проектных, то определяют поправки (редукции) в положение точки М, точку смещают и снова измеряют угол βМ и линии d3 и d4. Из решения хода находят координаты точки М и сравнивают их с проектными. Такие действия выполняют до достижения необходимой точности построения проектной точки.
Вынос на местность проектной точки способом линейной засечки
Способы створных засечек: а) способ створно-линейной засечки; б) способ створной засечки
При небольших расстояниях от проектной точки до точек геодезической основы удобно использовать способ линейной засечки, реализуемый с помощью двух или трёх рулеток (см. рис.). Разбивочными элементами в этом способе являются только расстояния S или горизонтальные проложения.
Для выноса осей сооружений удобно использовать способы створных засечек (см. рис.).
В схеме створно-линейной засечки (см. рис. а) положение точки М определяют на линии створа, образованного пунктами А и В геодезической основы. По линии створа проектным расстоянием d задают положение искомой точки М. При необходимости положение точки М может быть проконтролировано с другой точки створа. В точке А створа устанавливают теодолит, а в точке В – визирную цель (на штативе, с возможностью центрирования и горизонтирования).
В схеме створной засечки (см. рис. б) точку М задают на линии пересечения створов АВ и СD. Для повышения точности работу целесообразно выполнять одновременно двумя теодолитами и двумя визирными целями несколькими приёмами с перестановкой теодолитов и визирных целей. Для контроля измеряют расстояния от построенной точки до исходных пунктов геодезической основы.
Обычно на строительной площадке имеется т.н. строительная сетка. В её системе координат задано положение всех осей (главных, основных и т.д.), а также всех главных (узловых) точек. В этом случае вынос проектных точек осуществляется в системе координат строительной сетки по приращениям координат Δx и Δy (см. рис.). В общегосударственной или местной системах координат ХОY используется система координат хАy строительной сетки c началом координат в точке А. Ось Аy задается исходным направлением на другую исходную точку (В) геодезической основы. Положение точки М определяется расстояниями Δx и Δy, т.е. приращениями координат в системе координат строительной сетки.
Разбивка точек сооружения от строительной сетки
Способ бокового нивелирования
Предварительно строят проектное расстояние Δy, устанавливают в полученной точке С теодолит, строят проектный угол β, равный 90 0 на точку М и в полученном направлении откладывают отрезок Δx. Для обеспечения более высокой точности построения точки меньшее из Δx и Δy следует строить в виде перпендикуляра, а большее – по створу исходной линии.
Вынос вертикальных осей конструкций выполняют способом бокового нивелирования (см. рис.). От оси АВ, на которой находится строительная конструкция, например, колонна, а небольшом расстоянии l строят линию А’В’, параллельную исходной линии АВ. В точке А’ устанавливают теодолит, который визируют на марку, находящуюся в точке В’. Перпендикулярно к оси колоны последовательно на её основание и верх устанавливают рейку Р (с уровнем, ориентированным осью по продольной оси рейки) и берут отсчёты а1 и а2 по вертикальной нити сетки зрительной трубы. Равенство указанных отсчётов определяет вертикальность оси колонны. Если расхождение между отсчётами недопустимо, то положение вертикальной оси колонны выправляют.
Оставьте свой отзыв, комментарий или задайте вопрос
что такое угловая засечка
Прямая угловая засечка
Прямая угловая засечка используется когда на местности неудобно или невозможно измерить длины сторон, или когда дополнительная точка находится на значительном расстоянии от исходных пунктов.
Прямая угловая геодезическая засечка заключается в том, что по известным координатам двух точек (например точек А и В) и измеренных при них углов α и β вычисляют координаты третьей точки N.
Решение прямой угловой засечки проще всего выполнить по формулам Юнга:
Вычисления удобно выполнять в таблице:
Для контроля правильности решения прямой угловой засечки по координатам точки B и полученным координатам точки N вычисляют координаты точки A, которые должны быть равны исходным координатам:
Пример решения прямой угловой засечки
Дано:
Найти:
1) вычисляют угол γ:
2) в таблицу записывают значения углов α, β и γ и координаты точек A и B;
3) вычисляют котангенсы углов α, β и γ и переносят их в таблицу:
Таблица решения прямой угловой засечки
4) по приведенным формулам вычисляют координаты точки N:
5) выполняют контроль правильности решения прямой угловой засечки, вычисляя координаты точки A, которые должны быть равны исходным координатам:
Таким образом мы получили координаты точки A, которые равны заданным, следовательно решение правильное.
Длины сторон A-B, B-N и A-N можно получить по координатам точек A, B, N решая обратную геодезическую задачу.
Для надежного контроля определения координат третьего пункта, на практике используют многократную прямую угловую засечку с трех и более исходных пунктов.
Прямую угловую засечку также можно решать по формулам Гаусса (по дирекционным углам направлений).
Основы геодезии
О геодезии и разный полезный материал для геодезистов.
Прямая угловая засечка
Сначала рассмотрим так называемый общий случай прямой угловой засечки, когда углы β1 и β2 измеряются на двух пунктах с известными координатами, каждый от своего направления с известным дирекционным углом (рис.2.6).
Исходные данные: XA, YA, αAC,
XB, YB, αBD
Графическое решение. От направления AC отложить с помощью транспортира угол β1 и провести прямую линию AP; от направления BD отложить угол β2 и провести прямую линию BP ; точка пересечения этих прямых является искомой точкой P.
Аналитическое решение. Приведем алгоритм варианта, соответствующий общему случаю засечки:
для линии AP Y – YA= tgα1 * ( X – XA ),
Частным случаем прямой угловой засечки считают тот случай, когда углы β1 и β2 измерены от направлений AB и BA, причем угол β1 – правый, а угол β2 – левый (в общем случае засечки оба угла – левые) – рис.2.7.
Решение прямой угловой засечки методом треугольника соответствует частному случаю засечки. Порядок решения при этом будет такой:
1. решить обратную задачу между пунктами A и B и получить дирекционный угол αAB и длину b линии AB,
2. вычислить угол γ при вершине P, называемый углом засечки,
(2.19)
3. используя теорему синусов для треугольника APB:
(2.20)
Для вычисления координат X и Y в частном случае прямой угловой засечки можно использовать формулы Юнга:
(2.22)
От общего случая прямой угловой засечки нетрудно перейти к частному случаю; для этого нужно сначала решить обратную геодезическую задачу между пунктами A и B и получить дирекционный угол αAB линии AB и затем вычислить углы в треугольнике APB при вершинах A и B
Для машинного счета все рассмотренные способы решения прямой угловой засечки по разным причинам неудобны. Один из возможных алгоритмов решения общего случая засечки на ЭВМ предусматривает следующие действия:
и совместное решение этих уравнений:
(2.27)
4. перевод координат X’ и Y’ из системы X’O’Y’ в систему XOY:
(2.28)
Так как Ctgα2′ = – Ctgγ и угол засечки γ всегда больше 0, то решение (2.27) всегда существует.
Прямая геодезическая угловая засечка
Расчетная работа
Определение положения дополнительных пунктов
Цель работы:освоить методику и технику вычислений координат дополнительных опорных пунктов, определенных прямыми и обратными угловыми и линейными геодезическими засечками и их комбинациями, лучевым методом и снесением координат с вершины знака на землю, и научиться оценивать ожидаемую погрешность положения определяемого пункта.
Прямая геодезическая угловая засечка
Прямая геодезическая угловая засечка применяется для определения координат дополнительной точки на основании двух исходных пунктов с известными координатами. Для обеспечения надежного контроля измерений и повышения точности определения положения искомого пункта на практике, как правило, применяют многократные прямые засечки не менее чем с трех исходных пунктов.
Заданием предусмотрено решение прямой геодезической засечки с трех исходных пунктов А, В, С (рис. 1) в двух комбинациях: с использованием формул Юнга и Гаусса. Варианты задачи приведены в приложении 1.
Рис. 1. Схема расположения пунктов
Решение прямой геодезической засечки по измеренным углам.Если между двумя исходными пунктами А(1) и В(2) имеется взаимная видимость и при них измерены горизонтальные углы β1 и β2 (рис. 1.), то решение задачи выполняют по формулам Юнга:
Результаты решения задачи с использованием микрокалькулятора сведены в табл. 1. Цифры в скобках означают последовательность операций.
Решение прямой геодезической засечки по дирекционным углам направлений.Если между исходными пунктами А и С (рис.1.) отсутствует взаимная видимость, то для решения прямой геодезической засечки удобно пользоваться формулами Гаусса. При этом на исходных пунктах В и С измеряют соответственно углы β2 и β3 между исходными направлениями АВ и СD и направлениями на определяемую точку Р.
Координаты определяемой точки Р могут быть рассчитаны по формулам тангенсов либо котангенсов дирекционных углов направлений (с учетом обозначений на схеме рис.1.) как:
(1.1)
(1.2)
В случае, когда значение одного из дирекционных углов окажется близким к 90° или 270°, вычисление по формулам (1.1) становится неудобным вследствие большой величины тангенса этого дирекционного угла; при этом выгодно пользоваться формулами котангенсов дирекционных углов (1.2).
Расчет координат точки Р по формулам котангенсов дирекционных углов направлений для рассматриваемого примера приведен в табл.2
Определение координат засечками.
Для определения планового положения точки необходимо измерить два элемента. Для контроля, кроме необходимых, выполняют избыточные измерения. Засечки различают прямые, обратные и комбинированные. В прямой засечке измерения выполняют на исходных пунктах (рис. 6.6 a, г); в обратной – на определяемом пункте (рис. 6.6 б, д); в комбинированной – на исходных и определяемом пунктах (рис. 6.6 в). В зависимости от вида измерений засечки бывают угловые (рис. 6.6 a, б, в), линейные (рис. 6.6 г), линейно-угловые (рис. 6.6 д). Измеренные углы на рис. 6.6 отмечены дугами, измеренные расстояния – двумя штрихами.
Рассмотрим вычисление координат в некоторых засечках.
Прямая угловая засечка. На исходных пунктах A и B с координатами ,
,
,
. (рис. 6.6 а) измеряют углы
и
. При обработке измерений сначала вычисляют дирекционные углы направлений AP и BP:
;
.
Дирекционные углы с координатами связаны формулами обратной геодезической задачи
;
.
Решая эти уравнения относительно xp и yp, получим формулы, по которым вычисляют координаты определяемой точки Р (формулы Гаусса):
; (6.5)
.
Для контроля ординату yP вычисляют вторично по формуле:
.
Рис. 6.6. Схемы засечек: а – прямая угловая; б – обратная угловая; в – комбинированная угловая; г – линейная; д – линейно-угловая
Если один из дирекционных углов или
близок к
или
, то вместо формул (6.5 – 6.7) вычисления выполняют по формулам
;
.
Для контроля аналогичные измерения и вычисления выполняют, опираясь на другую исходную сторону BC. За окончательные значения координат определяемой точки принимают средние.
Существуют и иные формулы решения прямой угловой засечки, например, формулы котангенсов углов треугольника (формулы Юнга):
;
.
;
.
Для контроля измеряют избыточный угол и вычисляют координаты, используя другую пару измеренных углов.
Для контроля измеряют избыточное расстояние d 3 и вычисляют координаты из другого треугольника ВРС.
Задачи на сфере: угловая засечка
Угловая засечка — это нахождение положения точки по координатам двух исходных пунктов и значениям азимутов направлений с этих пунктов на определяемую точку.
Содержание
Общие положения
В качестве модели Земли принимается сфера с радиусом R, равным среднему радиусу земного эллипсоида. Аналогом прямой линии на плоскости является геодезическая линия на поверхности. На сфере геодезическая линия — дуга большого круга.
Введём следующие обозначения:
Линейное расстояние по дуге большого круга s связано со сферическим расстоянием σ формулой s = R σ.
Постановка задачи
Алгоритм
Решение любого вида засечек сводится к нахождению полярных координат искомой точки, т.е. начального направления и расстояния на неё с одного из исходных пунктов. На конечном этапе координаты находятся из решения прямой геодезической задачи. Поскольку в угловой засечке направления α₁₃ и α₂₃ уже заданы, остаётся определить расстояние σ₁₃ или σ₂₃.
На рисунке синим цветом выделены заданные элементы сферических треугольников, красным цветом неизвестные, зелёным — вспомогательные элементы. Очевидно, в треугольнике Q₁Q₂Q₃ нет ни одного известного элемента. Однако из решения обратной геодезической задачи для пунктов Q₁, Q₂ могут быть получены расстояние σ₁₂, а также азимуты α₁₂ и α₂₁, после чего углы β₁ и β₂ вычисляются как разности азимутов при соответствующих пунктах. Далее из решения треугольника Q₁Q₂Q₃ найдём сторону σ₁₃.
Углы β₁, β₂ и длина σ₁₃ вычисляются по формулам:
Правда, до вычисления длины σ₁₃ необходимо проанализировать полученные значения углов β₁ и β₂. Ниже в коде функции можно увидеть пример такого анализа:
Здесь необходимо пояснить, что на сфере две несовпадающие геодезические линии всегда пересекаются в двух точках-антиподах. В традиционной постановке задачи направление на нужное пересечение задаётся явно. Если же прямое и обратное направления по условию равнозначны, возникает вопрос выбора одного из антиподов: φ₃, λ₃ или φ₃′ = −φ₃, λ₃′ = λ₃ ± 180°.
Пример программной реализации
Пример функции SphereAngular на языке Си, реализующей вышеизоложенный алгоритм:
Этот код находится в архиве Sph.zip в файле sph.c. Кроме того, в файл sph.h включены следующие определения:
Теперь напишем программу, которая обращается к функции SphereAngular для решения угловой засечки:
В архиве Sph.zip этот код находится в файле ang.c. Создадим исполняемый модуль ang компилятором gcc:
Впрочем, в архиве есть Makefile. Для MS Windows готовую программу ang.exe можно найти в архиве Sph-win32.zip.
Программа читает данные из стандартного ввода консоли и отправляет результаты на стандартный вывод. Для чтения и записи файлов используются символы перенаправления потока «>» и « Ссылки