что такое туннельный эффект

Что такое квантовое туннелирование?

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Когда объект сталкивается с барьером, интуитивно понятно, что объект остановится или отклонится назад (потому что барьер может остановить объект). Теперь, хотя именно так работает мир классической механики, эти довольно простые ситуации становятся немного шаткими, когда мы погружаемся в квантовую область.

Проще говоря, квантовое туннелирование относится к явлению, при котором электрон способен проходить через барьер и переходить на другую сторону. Однако, как говорит Ричард Фейнман, если вы думаете, что понимаете QM (Квантовую механику), вы не понимаете этого вообще. Как бы ни была проста концепция квантового туннелирования, давайте погрузимся прямо в нее, чтобы понять ее более сложные нюансы.

Основы

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Фото предоставлено Фондом Марселя-Андре Баше и Нобеля / Wikimedia Commons

Если бы мы сосредоточились на повышении точности любого из этих параметров более детально и сосредоточились, то другой параметр снизил бы уровень точности по сравнению с его измерением. Таким образом, если вы можете определить положение электрона с высокой точностью, тогда вы не сможете измерить его скорость с большой точностью. И наоборот, если вы сможете измерить скорость электрона с большой степенью точности, вы не сможете точно определить положение электрона.

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффектФото предоставлено Yuvalr / Wikimedia Commons

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Здесь лямбда представляет длину волны частицы, а ‘p’ представляет импульс частицы. Значение отношения Де Бройля состоит в том, что оно устанавливает основание для того факта, что материя может вести себя подобно волне. Эксперимент Дэвиссона-Гермера доказал, что волновая природа материи вне всякого сомнения основана на дифракции электронов через кристалл.

Позднее волновая природа материи была легко интегрирована в принцип неопределенности Гейзенберга. Принцип неопределенности гласит, что для электрона или любой другой частицы импульс и положение не могут быть точно определены одновременно. Всегда есть некоторая неопределенность либо с позицией «дельта х», либо с импульсом «дельта р». Уравнение неопределенности Гейзенберга является:

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Представьте себе, что вы точно измеряете импульс частицы, так что «дельта Р» равна нулю. Чтобы удовлетворить приведенному выше уравнению, неопределенность в положении частицы «Дельта x» должна быть бесконечной. Из уравнения де Бройля мы знаем, что частица с определенным импульсом имеет определенную длину волны «лямбда». Определенная длина волны распространяется по всему пространству до бесконечности.

Согласно вероятностной интерпретации Борна, это означает, что частица не локализована в пространстве, поэтому неопределенность положения становится бесконечной. Однако в реальной жизни длины волн имеют конечную границу и не бесконечны, поэтому неопределенность положения и неопределенность импульса имеют ограниченное значение. Уравнение де Бройля и принцип неопределенности Гейзенберга с этого момента превратились в две капли воды.

Сводя все это вместе

Если барьер достаточно тонкий, то амплитуда может быть ненулевой с другой стороны. Это означало бы, что существует конечная вероятность того, что некоторые из частиц будут туннелировать через барьер. Туннельный ток определяется как отношение плотности тока, выходящего из барьера, к плотности тока, падающей на барьер. Если этот коэффициент пропускания через барьер является ненулевым значением, то существует конечная вероятность того, что частица может проходить через барьер.

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Фото предоставлено Феликсом Клингом / Wikimedia Commons

Его очевидная способность прыгать в промежутках иллюстрирует одно из последствий света, имеющего волнообразный характер. Например, свет, проникающий сквозь стеклянный блок под небольшим углом, эффективно задерживается внутри стекла воздушным барьером с дальней стороны, если только второй стеклянный блок не помещается рядом с ним (но не прикасается).

Из-за распространения волны часть ее проникает в воздушный барьер и, если она сталкивается с большим количеством стекла за его пределами, она может продолжить движение, таким образом, по-видимому, перепрыгивая воздушный зазор и выходя из своей тюрьмы. Подобное происходит в субатомном масштабе, когда альфа-частицы пытаются вырваться из нестабильных ядер во время радиоактивного распада.

Частицы эффективно удерживаются в ядре ядерными силами и, в принципе, не должны быть в состоянии убежать. Однако, благодаря квантовому туннелированию и принципу неопределенности, они улетают!

Источник

Квантовое туннелирование элементарных частиц и сверхсветовые перемещения

Экспериментально подтверждается, что элементарная частица должна превысить скорость света, если квантовомеханическим образом «туннелирует» через стену.

Едва только были открыты радикальные уравнения квантовой механики, физики обнаружили один из страннейших феноменов, допускаемых этой теорией.

«Квантовое туннелирование» демонстрирует, сколь глубоко отличаются элементарные частицы, например, электроны, от макроскопических объектов. Например, бросьте мяч о стену – и он отскочит. Дайте ему скатиться на дно ложбинки, и он останется там. Но частица в первом случае может случайно проскочить сквозь стену. У частицы есть шанс «проскользнуть через гору и выкатиться из ложбинки», как написали в журнале Nature двое физиков в 1928 году, в одной из самых ранних характеристик квантового туннелирования.

Физики быстро обнаружили, что способность частиц туннелировать сквозь барьеры позволяет разрешить многие тайны. Эта способность объясняет и различные химические связи, и радиоактивный распад, и термоядерный синтез в недрах Солнца, где ядрам водорода удается преодолеть взаимное отталкивание и слиться – в результате чего возникает солнечный свет.

Но физиков одолело любопытство, сначала умеренное, а потом по-настоящему болезненное. Сколько же времени требуется частице, чтобы туннелировать сквозь барьер?

Проблема заключалась в том, что ответ получался бессмысленным.

Только в 1962 году инженер Томас Хартман из «Texas Instruments» написал статью, в которой открыто принимал шокирующие выводы, проистекавшие из математики.

Хартман обнаружил, что по принципу действия барьер напоминает короткое замыкание. Когда частица туннелирует, она тратит на перемещение меньше времени, чем если бы барьер отсутствовал. Еще поразительнее оказалось вот что: он рассчитал, что при утолщении барьера практически не увеличивается время, нужное частице, чтобы через него туннелировать. Таким образом, при наличии достаточно толстого барьера частица могла бы перескочить с одной его стороны на другую быстрее, чем свет преодолел бы то же расстояние в вакууме.

Короче говоря, квантовое туннелирование открывает возможность для сверхсветовых перемещений, которые, казалось бы, в физике не допускаются.

“Настоящие поводы для беспокойства появились только после открытия эффекта Хартмана,” – сказал Стейнберг.

Эта дискуссия закручивалась десятилетиями, отчасти потому, что вопрос о времени туннелирования затрагивает один из наиболее загадочных аспектов квантовой механики. «Отчасти он касается общей проблемы, которая позволила бы понять, что такое время, и как время измеряется в квантовой механике, и что это значит,” сказал Илай Поллак, физик-теоретик из Института Вейцмана в Израиле. Со временем физики вывели не менее 10 альтернативных математических выражений, описывающих туннелирование во времени, и каждое из них отражает свой взгляд на процесс туннелирования. Ни один из этих вариантов не позволил решить проблему.

Но сегодня вопрос о том, как соотносится туннелирование и время, вновь обретает актуальность, благодаря серии виртуозных экспериментов, позволивших точно измерить время туннелирования в лаборатории.

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Эфраим Стейнберг, физик из университета Торонто. Занимается проблемой времени туннелирования уже не одно десятилетие.

Измерительный опыт, получивший наиболее высокую оценку на настоящий момент, был описан в одной из публикаций в июльском номере журнала Nature. Группа Стейнберга из университета Торонто воспользовалась методом под названием «часы Лармора», чтобы оценить, как атомы рубидия туннелируют через лазерное поле, в котором действуют силы отталкивания.

“Часы Лармора – наилучший и наиболее понятный способ измерить время туннелирования, и это был первый эксперимент, в рамках которого это время удалось очень хорошо измерить,” сказал Игорь Литвинюк, физик из университета Гриффита в Австралии, описавший иную попытку такого измерения времени туннелирования и также опубликовавший статью в журнале Nature.

Луис Манзони, физик-теоретик из Конкордия-Колледж, штат Миннесота, также находит убедительными измерения с применением часов Лармора. «Они в самом деле измеряют время туннелирования,” – говорит он.

Последние эксперименты вновь привлекают внимание к нерешенной проблеме. С момента публикации статьи Хартмана минуло шесть десятилетий, и независимо от того, как тщательно физики переопределяли время туннелирования или с какой точностью измеряли его в лаборатории, неизменно обнаруживалось, что при квантовом туннелировании проявляется эффект Хартмана. Представляется, что туннелирование является неисправимо, непоколебимо сверхсветовым процессом.

Литвинюк предлагает задуматься, “как это возможно, чтобы [туннелирующая частица] двигалась быстрее света?” и отмечает, что “это была чистая теория, пока не были выполнены измерения.”

Сколько времени?

Время туннелирования сложно зафиксировать, как и понять, что такое реальность.

В макроскопических масштабах время, затрачиваемое объектом для перехода из точки A в точку B, можно узнать, просто разделив расстояние на скорость объекта. Но в квантовой теории невозможно одновременно точно знать расстояние и скорость.

В квантовой теории у частицы есть целый спектр возможных местоположений и скоростей. Определенные варианты из всех этих возможностей в момент измерения словно кристаллизуются. Как именно это происходит – один из глубочайших вопросов.

Чтобы понять эту проблему в контексте туннелирования, начертим колоколообразную кривую, соответствующую всем возможным местоположениям частицы. Такая кривая, называемая «волновым пакетом», центрирована по позиции А. Теперь изобразим перемещение волнового пакета по направлению к барьеру, он при этом будет выглядеть как цунами (или как солитон? – прим. пер.). Уравнения квантовой механики описывают, как волновой пакет раздваивается при столкновении с препятствием. Большая часть пакета отражается и направляется обратно к А. Но меньший пик вероятности проскальзывает сквозь барьер и продолжает движение к B. Следовательно, существует шанс, что детектор зарегистрирует частицу в B.

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Но, когда частица прибудет в B, что можно будет сказать о ее пути, или о том, как долго она находилась в барьере? Прежде, чем она внезапно появилась B, эта частица представляла собой двухчастную вероятностную волну, одна ее часть была отражена, а вторая просочилась. Волна одновременно преодолела барьер и не преодолела. В таком случае смысл «времени туннелирования» становится неясен.

Но, все-таки, невозможно отрицать, что любая частица, которая вышла из A и оказалась в B, обязательно проходит через барьер, и в какой-то момент взаимодействует с барьером. Вопрос – в какой именно момент?

Но в случае с туннелированием никаких часов внутри частицы не установлено. Как же отслеживать изменения, происходящие с ней? Физики нашли множество «прокси» для туннелирования времени.

Туннелирование и время

Хартман (а до него Лерой Арчибальд Макколл в 1932 году) избрали простейший подход, позволяющий оценить, сколько времени уходит на туннелирование. Хартман рассчитал разницу между временем наиболее вероятного прибытия частицы из точки A в точку B в вакууме по сравнению с аналогичным временем, затрачиваемым, когда частица преодолевает барьер. Для этого он учел, как барьер сдвигает пиковую позицию на колоколообразной кривой передаваемого волнового пакета.

Но с этим подходом есть проблема, и она связана с тем престранным допущением, будто барьер ускоряет частицы. Мы попросту не можем сравнить исходный и конечный пик волнового пакета частицы. Отмеряя на часах разницу между наиболее вероятным временем отправления частицы (когда пик ее колоколообразной кривой находится в точке A) и ее наиболее вероятным временем прибытия (когда пик достигает точки B), мы не узнаем, сколько времени летела конкретная частица, поскольку частица, зафиксированная в B, не обязательно отправилась из A. На момент изначального вероятностного распределения она была везде и нигде, и могла быть, например, в переднем хвосте распределения, который расположен сравнительно близко к барьеру. В таком случае у нее будет шанс быстро достичь B.

Поскольку точные траектории частиц узнать невозможно, исследователи стали искать более вероятностный подход. Рассмотрели тот факт, что, если частица попадает в барьер, то в каждый момент времени существует некоторая вероятность, что частица находится внутри барьера (и вероятность, что она вне барьера). Затем физики суммируют вероятности для каждого мгновения и выводят среднее время туннелирования.

По поводу того, как измерять вероятности, в конце 1960-х были изобретены различные мысленные эксперименты, в которых «часы» можно прикреплять к самим частицам. Если часы каждой частицы «тикают», только пока она находится внутри барьера, и мы снимем показания с часов множества переданных частиц, то у нас получится разброс различных значений времени. Однако, среднее значение будет соответствовать времени туннелирования.

Встраиваемые часы

Хотя физики занимались оценкой времени туннелирования с 1980-х, сверхточные измерения стали быстро развиваться сравнительно недавно – в лаборатории Урсулы Келлер в Швейцарской высшей технической школе, Цюрих. Команда Урсулы Келлер смогла измерить время туннелирования при помощи так называемых атточасов. В атточасах Келлер электрон из атома гелия попадает в барьер, который вращается на месте, подобно стрелке часов. Электроны туннелируют чаще всего, когда барьер находится в определенной ориентации – допустим, по атточасам это полдень. Затем, когда электроны появляются из барьера, их отбрасывает в направлении, зависящем от положения барьера в тот момент. Чтобы оценить время туннелирования, команда Келлер измеряла угловую разницу между полуднем, на который приходилось большинство актов туннелирования, и углом, под которым улетали большинство исходящих электронов. Так удалось измерить разницу в 50 аттосекунд, то есть, миллиардных миллиардных долей секунды.

Затем, в работе, о которой было сообщено в 2019 году, группа Литвинюка смогла улучшить эксперимент Келлер с атточасами, взяв вместо гелия более простые атомы водорода. Они измерили даже более краткие промежутки времени, не более двух аттосекунд — это позволяет предположить, что туннелирование происходит почти мгновенно.

Но некоторые эксперты пришли к выводу, что атточасы – не слишком подходящий прибор для измерения времени туннелирования. Манзони, опубликовавший анализ таких измерений, указал, что этот подход ущербен в том же отношении, что и определение времени туннелирования по Хартману. Задним числом можно сказать, что у электронов, практически мгновенно туннелировавших сквозь барьер, была фора.

Тем временем Стейнберг, Рамос и их торонтские коллеги Дэвид Спирингс и Изабель Расико провели эксперимент, оказавшийся более убедительным.

Этот альтернативный подход опирается на факт, что многим частицам присуще магнитное свойство, которое называется «спин». Спин можно сравнить со стрелкой, которая может указывать только вверх или вниз. Но до измерения она может указывать куда угодно. Как открыл в 1897 году ирландский физик Джозеф Лармор, угол спина характеризуется вращением или «прецессией», когда частица находится в магнитном поле. Команда из Торонто смогла уподобить такую прецессию ходу часовых стрелок, и полученное устройство назвали «часами Лармора».

В качестве барьера исследователи воспользовались лазерным лучом и пропустили сквозь него магнитное поле. Затем подготовили атомы рубидия, чьи спины были ориентированы в определенном направлении, и дали этим атомам пройти сквозь барьер. Далее измерили спины атомов, вышедших с другой стороны. Если измерить спин отдельного атома, то всегда получаешь неинформативный результат «вверх» или «вниз». Но, если повторять измерение снова и снова, то совокупные измерения покажут, какую прецессию претерпели спины, пока атомы находились в барьере – следовательно, сколько времени они там провели.

что такое туннельный эффект. Смотреть фото что такое туннельный эффект. Смотреть картинку что такое туннельный эффект. Картинка про что такое туннельный эффект. Фото что такое туннельный эффект

Исследователи сообщили, что атом рубидия остается внутри барьера в среднем на протяжении 0,61 миллисекунд, что согласуется с теми показаниями часов Лармора, что были теоретически спрогнозированы в 1980-е. Чтобы проделать этот путь в вакууме, атомам потребовалось бы больше времени. Следовательно, эти расчеты показывают: если сделать достаточно толстый барьер, то такое ускорение позволит атомам туннелировать сквозь него быстрее скорости света.

Тайна, а не парадокс

Исследователи подчеркивают, что сверхсветовое туннелирование допустимо, коль скоро не допускает сверхсветовой передачи сигналов. По принципу оно похоже на «жуткое дальнодействие», изрядно беспокоившее Эйнштейна. Феномен «жуткого дальнодействия» связан с феноменом квантовой запутанности между сильно удаленными частицами, так, что акт измерения одной частицы мгновенно сказывается на состоянии обеих. Такая мгновенная связь между двумя частицами не вызывает парадоксов, поскольку с ее помощью частицы не могут обмениваться информацией друг с другом.

В статье, опубликованной в New Journal of Physics, Поллак и двое его коллег высказываются, что сверхсветовое туннелирование не допускает сверхсветового обмена сигналами по статистическим причинам: пусть даже туннелирование сквозь исключительно толстый барьер происходит очень быстро, крайне низка вероятность, что туннелирование сквозь такой барьер вообще произойдет. Поэтому адресату всегда целесообразнее отправлять сигнал в вакууме.

Почему же не послать тучи частиц сквозь очень-очень толстый барьер, надеясь, что хотя бы одна преодолеет его со сверхсветовой скорости. Не будет ли достаточно всего одной частицы, чтобы передать ваше сообщение и сломать физику? Стейнберг, согласный со статистической трактовкой такой ситуации, настаивает, что единственной туннелировавшей частицы не хватит, чтобы передать информацию. У сигнала должна быть структура и детализация, а любой детализированный сигнал быстрее дойдет до адресата в эфире, нежели через ненадежный барьер.

Поллак считает, что эти вопросы требуют дальнейшего изучения. «Я думаю, что эксперименты Стейнберга подстегнут развитие теории. Куда она нас приведет – не знаю».

Размышления будут сопровождаться новыми экспериментами, у Стейнберга их целый список. Локализуя магнитное поле в разных областях барьера, Стейнберг и его коллеги рассчитывают проверить «не только длительность времени, которое проводит частица внутри барьера, но и где именно она проводит это время». Согласно теоретическим расчетам, большую часть времени атомы рубидия проводят на входе в барьер и на выходе из него, а в середине почти не задерживаются. Рамос отмечает, что «это удивительно и совершенно не поддается объяснению».

Зондируя множество частиц и усредняя, что именно с ними происходит, исследователи все детальнее изображают, что происходит «внутри горы», о чем пионеры квантовой механики даже не могли подумать более века назад. С точки зрения Стейнберга, эти разработки подсказывают: несмотря на все странности, характерные для квантовой механики, «если знать, где в итоге оказалась частица, можно подробнее определить, что с ней происходило до этого».

Источник

Квантовый туннельный эффект

Имеется вероятность, что квантовая частица проникнет за барьер, который непреодолим для классической элементарной частицы.

Представьте шарик, катающийся внутри сферической ямки, вырытой в земле. В любой момент времени энергия шарика распределена между его кинетической энергией и потенциальной энергией силы тяжести в пропорции, зависящей от того, насколько высоко шарик находится относительно дна ямки (согласно первому началу термодинамики). При достижении шариком борта ямки возможны два варианта развития событий. Если его совокупная энергия превышает потенциальную энергию гравитационного поля, определяемую высотой точки нахождения шарика, он выпрыгнет из ямки. Если же совокупная энергия шарика меньше потенциальной энергии силы тяжести на уровне борта лунки, шарик покатится вниз, обратно в ямку, в сторону противоположного борта; в тот момент, когда потенциальная энергия будет равна совокупной энергии шарика, он остановится и покатится назад. Во втором случае шарик никогда не выкатится из ямки, если не придать ему дополнительную кинетическую энергию — например, подтолкнув. Согласно законам механики Ньютона, шарик никогда не покинет ямку без придания ему дополнительного импульса, если у него недостаточно собственной энергии для того, чтобы выкатиться за борт.

А теперь представьте, что борта ямы возвышаются над поверхностью земли (наподобие лунных кратеров). Если шарику удастся перевалить за приподнятый борт такой ямы, он покатится дальше. Важно помнить, что в ньютоновском мире шарика и ямки сам факт, что, перевалив за борт ямки, шарик покатится дальше, не имеет смысла, если у шарика недостаточно кинетической энергии для достижения верхнего края. Если он не достигнет края, он из ямы просто не выберется и, соответственно, ни при каких условиях, ни с какой скоростью и никуда не покатится дальше, на какой бы высоте над поверхностью снаружи ни находился край борта.

В мире квантовой механики дело обстоит иначе. Представим себе, что в чем-то вроде такой ямы находится квантовая частица. В этом случае речь идет уже не о реальной физической яме, а об условной ситуации, когда частице требуется определенный запас энергии, необходимый для преодоления барьера, мешающего ей вырваться наружу из того, что физики условились называть «потенциальной ямой». У этой ямы есть и энергетической аналог борта — так называемый «потенциальный барьер». Так вот, если снаружи от потенциального барьера уровень напряженности энергетического поля ниже, чем энергия, которой обладает частица, у нее имеется шанс оказаться «за бортом», даже если реальной кинетической энергии этой частицы недостаточно, чтобы «перевалить» через край борта в ньютоновском понимании. Этот механизм прохождения частицы через потенциальный барьер и назвали квантовым туннельным эффектом.

Работает он так: в квантовой механике частица описывается через волновую функцию, которая связана с вероятностью местонахождения частицы в данном месте в данный момент времени. Если частица сталкивается с потенциальным барьером, уравнение Шрёдингера позволяет рассчитать вероятность проникновения частицы через него, поскольку волновая функция не просто энергетически поглощается барьером, но очень быстро гасится — по экспоненте. Иными словами, потенциальный барьер в мире квантовой механики размыт. Он, конечно, препятствует движению частицы, но не является твердой, непроницаемой границей, как это имеет место в классической механике Ньютона.

Если барьер достаточно низок или если суммарная энергия частицы близка к пороговой, волновая функция, хотя и убывает стремительно при приближении частицы к краю барьера, оставляет ей шанс преодолеть его. То есть имеется определенная вероятность, что частица будет обнаружена по другую сторону потенциального барьера — в мире механики Ньютона это было бы невозможно. А раз уж частица перевалила через край барьера (пусть он имеет форму лунного кратера), она свободно покатится вниз по его внешнему склону прочь от ямы, из которой выбралась.

Квантовый туннельный переход можно рассматривать как своего рода «утечку» или «просачивание» частицы через потенциальный барьер, после чего частица движется прочь от барьера. В природе достаточно примеров такого рода явлений, равно как и в современных технологиях. Возьмем типичный радиоактивный распад: тяжелое ядро излучает альфа-частицу, состоящую из двух протонов и двух нейтронов. С одной стороны, можно представить себе этот процесс таким образом, что тяжелое ядро удерживает внутри себя альфа-частицу посредством сил внутриядерной связи, подобно тому как шарик удерживался в ямке в нашем примере. Однако даже если у альфа-частицы недостаточно свободной энергии для преодоления барьера внутриядерных связей, всё равно имеется вероятность ее отрыва от ядра. И, наблюдая спонтанное альфа-излучение, мы получаем экспериментальное подтверждение реальности туннельного эффекта.

Другой важный пример туннельного эффекта — процесс термоядерного синтеза, питающий энергией звезды (см. Эволюция звезд). Один из этапов термоядерного синтеза — столкновение двух ядер дейтерия (по одному протону и одному нейтрону в каждом), в результате чего образуется ядро гелия-3 (два протона и один нейтрон) и испускается один нейтрон. Согласно закону Кулона, между двумя частицами с одинаковым зарядом (в данном случае протонами, входящими в состав ядер дейтерия) действует мощнейшая сила взаимного отталкивания — то есть налицо мощнейший потенциальный барьер. В мире по Ньютону ядра дейтерия попросту не могли бы сблизиться на достаточное расстояние и синтезировать ядро гелия. Однако в недрах звезд температура и давление столь высоки, что энергия ядер приближается к порогу их синтеза (в нашем смысле, ядра находятся почти на краю барьера), в результате чего начинает действовать туннельный эффект, происходит термоядерный синтез — и звезды светят.

Наконец, туннельный эффект уже на практике применяется в технологии электронных микроскопов. Действие этого инструмента основано на том, что металлическое острие щупа приближается к исследуемой поверхности на сверхмалое расстояние. При этом потенциальный барьер не дает электронам из атомов металла перетечь на исследуемую поверхность. При перемещении щупа на предельно близком расстоянии вдоль исследуемой поверхности он как бы перебирает атом за атомом. Когда щуп оказывается в непосредственной близости от атомов, барьер ниже, чем когда щуп проходит в промежутках между ними. Соответственно, когда прибор «нащупывает» атом, ток возрастает за счет усиления утечки электронов в результате туннельного эффекта, а в промежутках между атомами ток падает. Это позволяет подробнейшим образом исследовать атомные структуры поверхностей, буквально «картографируя» их. Кстати, электронные микроскопы как раз и дают окончательное подтверждение атомарной теории строения материи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *