что такое термометр сопротивления
Термометр сопротивления представляет собой конструкцию, в которой проволока из платины или меди намотана на специальный диэлектрический каркас, размещенный внутри герметичного защитного корпуса, удобного по форме для монтажа.
Работа термометра сопротивления основана на явлении изменения электрического сопротивления проводника в зависимости от его температуры (от температуры исследуемого термометром объекта). Зависимость сопротивления проволоки от температуры в общем виде выглядит так: Rt=R0(1+at), где R0 – сопротивление проволоки при 0°C, Rt – сопротивление проволоки при t°C, а — температурный коэффициент сопротивления термочувствительного элемента.
В процессе изменения температуры, тепловые колебания кристаллической решетки металла изменяют свою амплитуду, соответственно изменяется и электрическое сопротивление датчика. Чем выше температура — тем сильнее колеблется кристаллическая решетка — тем выше оказывается текущее сопротивление. В приведенной выше таблице представлены типичные характеристики двух популярных термометров сопротивления.
Жаропрочный корпус датчика призван защитить его от механических повреждений в процессе измерения температуры того или иного объекта.
Если потребитель точно определился, для каких целей необходим термодатчик, и выбрал именно термометр сопротивления (термопреобразователь сопротивления), значит важнейшими критериями для решения предстоящей задачи явились: высокая точность (порядка 0,1°С), стабильность параметров, почти линейная зависимость сопротивления от температуры объекта, взаимозаменяемость термометров.
Виды и конструкции
Наиболее чувствительные термометры Pt1000 и Pt100 изготавливают путем напыления тончайшего слоя платины на керамическую основу-подложку. Технологически достигается напыление малого количества платины (около 1 мг) на чувствительный элемент, дающее элементу небольшой размер.
Свойства платины при этом сохраняются: линейная зависимость сопротивления от температуры, устойчивость к высоким температурам, термостабильность. По этой причине наиболее популярные платиновые преобразователи сопротивления — это именно Pt100 и Pt1000. Медные элементы 50М и 100М изготавливаются путем ручной намотки тонкой медной проволоки, а платиновые 50П и 100П — путем намотки проволоки платиновой.
Прежде чем монтировать термометр, необходимо убедиться, что его тип выбран правильно, что градуировочная характеристика соответствует поставленной задаче, что монтажная длина рабочего элемента подходит, и остальные особенности конструкции позволяют произвести установку на данное место, для данных внешних условий.
Датчик проверяют на отсутствие внешних повреждений, осматривают его корпус, проверяют целостность обмотки датчика, а также сопротивление изоляции.
Некоторые факторы могут негативно отразиться на точности измерений. Если датчик установлен в не то место, монтажная длина не соответствует рабочим условиям, плохое уплотнение, нарушение теплоизоляции трубопровода или иного оборудования — все это вызовет погрешность при измерении температуры.
Следует проверить все контакты, ведь если электрический контакт в соединениях прибора и датчика плохой, то это чревато погрешностью. Не попадает ли влага или конденсат на обмотку термометра, нет ли замыкания витков, правильно ли выполнена схема соединения (отсутствие компенсационного провода, отсутствие подгонки сопротивления линии), соответствует ли градуировка измерительного прибора градуировке датчика? Это важные моменты, на которые всегда стоит обращать пристальное внимание.
Вот типичные ошибки, которые могут возникнуть при монтаже термодатчика:
Если на трубопроводе отсутствует теплоизоляция, то это неизбежно приведет к потерям тепла, поэтому место для измерения температуры должно быть выбрано так, чтобы все внешние факторы были учтены заранее.
Малая или излишняя длина датчика может способствовать ошибке из-за неправильной установки датчика в рабочий поток исследуемой среды (датчик установлен не навстречу потоку и не по оси потока, как это должно быть по правилам).
Градуировка датчика не соответствует регламентированной схеме для монтажа на данном объекте.
Нарушение условия компенсации паразитного влияния изменяющейся температуры окружающей среды (не установлены компенсационные пробки и компенсационный провод, датчик подключен к прибору регистрации температуры по двухпроводной схеме).
Не учтен характер среды: повышенная вибрация, химически агрессивная среда, среда повышенной влажности или повышенного давления. Датчик должен соответствовать условиям среды, выдерживать их.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Термометры сопротивления: от теории к практике
Введение
Температура — одна из наиболее часто измеряемых физических величин. Задачи измерения и контроля температуры встречаются практически во всех областях человеческой деятельности. Системы контроля температуры используются для поддержания микроклимата и в различной бытовой технике, где базовым требованием является их доступность. Прецизионное термостатирование в сельском хозяйстве необходимо для выращивания тепличных сельскохозяйственных культур. В химической промышленности и в металлургии часто требуется контроль температуры высоко агрессивных сред в диапазонах в несколько тысяч градусов. На производстве нарушения технологического процесса, связанные с выходом контролируемой температуры за допустимые пределы, могут привести к выпуску партии бракованного товара. В медицине ошибка в измерении температуры может стоить здоровья пациента и даже человеческой жизни. От качества контроля температуры в атомной промышленности, в частности при отливке корпусов реакторов, зависит жизнь всего населения нашей планеты.
Очевидно, что столь разнообразные требования, как по диапазону и точности, так и по типу исполнения и надежности измерительных систем, породили за многие годы большое разнообразие методов и средств, используемых для измерения и контроля температуры.
Ключевым элементом любой системы измерения и контроля температуры является первичный измерительный преобразователь (чувствительный элемент). От его точности и других основных параметров во многом зависят показатели всей системы в целом. Существуют различные типы датчиков температуры, наибольшее распространение среди них получили термопары, полупроводниковые термисторы и термометры сопротивления [5].
Термометры сопротивления
Термометр сопротивления (ТС) состоит из одного или нескольких термочувствительных элементов и внутренних соединительных проводов, помещенных в герметичный защитный корпус, а также внешних клемм и выводов, предназначенных для подключения к измерительному прибору. Чувствительный элемент (ЧЭ) термометра сопротивления представляет собой резистор, выполненный из металлической проволоки или пленки, с выводами для крепления соединительных проводов, имеющий известную зависимость электрического сопротивления от температуры [1].
На практике под термином «термометр сопротивления» понимают как герметичный датчик в металлическом или керамическом корпусе с внешним разъемом для подключения к измерительным приборам, так и сам чувствительный элемент, который может быть изготовлен в корпусе с проволочными выводами или в SMD-конструктиве для поверхностного монтажа.
Основные преимущества ТС по сравнению с другими типами датчиков температуры — это их высокая точность, широкий диапазон рабочих температур, малые размеры, устойчивость к вибрациям, линейность номинальной статической характеристики и относительно высокое значение температурного коэффициента сопротивления (ТКС). Основными материалами для изготовления ЧЭ ТС являются платина, медь, никель и их сплавы. На практике чаще применяются платиновые термометры сопротивления (ПТС) с различной чистотой платины, которые обладают наивысшей стабильностью характеристик, устойчивостью к воздействию агрессивных сред и широким диапазоном рабочих температур (табл. 1).
Таблица 1. Сравнительные характеристики распространенных типов датчиков температуры
Тип датчика температуры | Основные преимущества | Основные недостатки | Основные области применения |
Термометры сопротивления | Высокая линейность номинальной статической характеристики Широкий диапазон рабочих температур Высокая стабильность основных параметров Устойчивость к воздействию агрессивных сред (ПТС) Относительно невысокая стоимость | Необходимость во внешней схеме для возбуждения | Широко используются как в относительно недорогих, так и в прецизионных системах измерения и контроля температуры |
Полупровод- никовые термисторы | Дешевизна и доступность Высокий температурный коэффициент сопротивления | Необходимость во внешней схеме для возбуждения Высокая нелинейность номинальной статической характеристики Низкая стабильность основных параметров | Предназначены для применения в недорогих устройствах с низкими требованиями к точности измерений, в простых системах одно- и двухпорогового контроля температуры или для организации контроля температуры во второстепенных узлах сложной радиоэлектронной аппаратуры |
Термопары | Самый широкий диапазон рабочих температур Высокая повторяемость характеристик Высокое быстродействие | Необходимость компенсации опорного спая Низкое выходное напряжение Необходимость использования крупногабаритных конструкций для компенсации опорного спая для достижения высокой точности измерений | Широко используются в бюджетных устройствах с «электронной» компенсацией опорного спая с невысокой точностью измерений Используются в сверхпрецизионных измерительных системах 0,01…0,25 °С с компенсацией опорного спая с помощью сосуда Дьюара или специализированных термостатов |
По конструкции чувствительного элемента различают пленочные и проволочные термометры сопротивления. Как правило, медные и никелевые ТС изготавливают из проволоки (рис. 1), а платиновые могут быть как проволочными, так и пленочными. Последние имеют меньшую чувствительность к вибрациям, однако предназначены для функционирования в более узком температурном диапазоне (рис. 2). По предназначению различают рабочие и эталонные термометры сопротивления, параметры обеих групп ТС регламентированы соответствующими стандартами.
Рис. 1. Проволочная конструкция термометра сопротивления
Термосопротивления: Теория
Недавно мне повезло побывать на производстве датчиков температуры, а точнее на швейцарском предприятии IST-AG, где делают платиновые и никелевые термосопротивления (RTD).
По этому поводу публикую две статьи, в которых читатель найдет довольно подробное описание этого типа датчиков, путеводитель по основным этапам производственного процесса и обзор возможностей, которые появляются при использовании тонкопленочных технологий.
В первой статье разбираемся с теоретической базой. Не слишком увлекательно, но весьма полезно.
Что такое термометры сопротивления
(они же — термосопротивления или RTD)
Сначала имеет смысл разобраться с терминологией. Если вы хорошо знакомы с вопросом, то смело переходите ко второй части статьи. А может быть и сразу к третьей.
Итак, под определение «датчик температуры» попадают тысячи самых разных изделий. Под датчиком можно понимать и готовое измерительное устройство, где на дисплее отображается значение температуры в градусах, и интегральную микросхему с цифровым сигналом на выходе, и просто чувствительный элемент, на базе которого строятся все остальные решения. Сегодня мы говорим только о чувствительных элементах, которые, впрочем, тоже будем называть словом «датчик».
Термометры сопротивления, которые также известны как термосопротивления и RTD (Resistance Temperature Detector) — это чувствительные элементы, принцип работы которого хорошо понятен из названия — электрическое сопротивление элемента растет с увеличением температуры окружающей среды и наоборот. Вероятно вы слышали о термосопротивлениях как о платиновых датчиках температуры типа Pt100, Pt500 и Pt1000 или как о датчиках 50М, 50П, 100М или 100П.
Иногда термосопротивления путают с термисторами или термопарами. Все эти датчики используются в похожих задачах, но, даже несмотря на то что термисторы тоже являются преобразователями температура-сопротивление, нельзя путать термосопротивления, термисторы и термопары между собой. О разнице в строении и назначении этих элементов написана уже тысяча статьей, так что я, пожалуй, не буду повторяться.
Отмечу главное: средний термометр сопротивления стоит в разы дороже, чем средний термистор и термопара, но только термосопротивления имеют линейную выходную характеристику. Линейность характеристики, а также гораздо более высокие показатели по точности и повторяемости результатов измерений, делают термосопротивления востребованными несмотря на разницу в цене.
Основные характеристики термосопротивлений
Если коротко, характеристики термосопротивлений можно разбить на три группы:
Номинальная статическая характеристика (НСХ)
НСХ — это функция (на практике чаще таблица значений), которая определяет зависимость сопротивление-температура.
Зависимость R(T), конечно, не является абсолютно линейной — на самом деле выходная характеристика термосопротивления описывается полиномом с известными коэффициентами. В простейшем случае это полином второй степени R(T) = R0 (1 + A x T + B x T 2 ), где R0 — номинальное сопротивление датчика, то есть значение сопротивления при 0°C.
Вид полинома и его коэффициенты описываются в различных национальных и международных стандартах. Действующий российский стандарт — ГОСТ 6651-2009. В Европе чаще используют DIN 60751 (он же IEC-751), однако одновременно с ним действует DIN 43760, в Северной Америке популярен стандарт ASTM E1137 и так далее. Несмотря на то что некоторые стандарты согласованы между собой, в целом картина довольно печальная и единого индустриального стандарта по факту не существует.
Наиболее популярные типы термосопротивлений — это платиновые датчики (Pt 3850, Pt 3750, Pt 3911 и др.), никелевые (Ni 6180, Ni 6720 и др.) и медные термосопротивления, например Cu 4280. Каждому типу датчиков соответствует свой полином R(T).
Приведенные наименования содержат название металла, который используется при изготовлении датчика, и коэффициент, который описывает отношение сопротивления датчика при 0 к сопротивлению при 100°C. Этот коэффициент, вместе со значением R0, определяет наклон функции R(T).
Используемый металл однозначно определяет степень полинома R(T), а коэффициенты полинома определяются температурным коэффициентом металла.
Например, для всех платиновых датчиков функция R(T) имеет следующий вид:
Та же логика действует для меди и никеля. Например, НСХ всех никелевых датчиков описывается полиномом шестой степени:
R(T) = R0 (1 + A x T + B x T 2 + C x T 3 + D x T 4 + E x T 5 + F x T 6 )
где коэффициенты определяются температурным коэффициентом никеля (Ni 6180 ppm/K, Ni 6720 ppm/K и т.д.).
Осталось сказать о последнем параметре НСХ термометров сопротивления — о номинальном сопротивлении R0. Чаще всего используются датчики со стандартным R0 — 50, 100, 500 или 1000 Ом, однако иногда требуются тремосопротивления с R0 = 2000 и даже 10000 Ом, а также датчики с «не кратным» номинальным сопротивлением.
То есть каждому типу термосопротивления может соответствовать несколько НСХ с разными номинальными сопротивлениями R0. Для наиболее распространенных в РФ характеристик используют стандартные обозначения: Pt100 и Pt1000 соответствуют платине с температурным коэффициентом 3850 ppm/K и R0 = 100 и 1000 Ом соответственно. Унаследованные из советских справочников обозначения 50П и 100П — это датчики из платины с коэффициентом 3911 ppm/K и R0 = 50 и 100 Ом, а датчики известные как 50М и 100М — это медь 4280 ppm/K с номинальным сопротивлением 50 и 100 Ом.
Точность датчика
Точность термосопротивления — это то, насколько зависимость R(T) реального датчика может отклониться от идеальной НСХ. Для обозначения точности термосопротивлений используют понятие класса допуска (от же класс точности).
Класс допуска определяет максимальное допустимое отклонение от номинальной характеристики, причем задается это отклонение как функция температуры — при нуле градусов фиксируется наименьшее допустимое отклонение, а при уменьшении или увеличении температуры диапазон допустимых значений линейно увеличивается.
Когда дело касается классов допуска, бардак в действующих стандартах только усугубляется — даже названия классов в разных источниках могут отличаться.
Другие названия | Допуск, °С | |
Класс АA | Class Y 1/3 DIN 1/3 B F 0.1 (если речь о тонкопленочном датчике) W 0.1 (если речь о намоточном датчике) | ±(0.1 + 0.0017 |T|) |
Класс A | 1/2 DIN 1/2 B F 0.15 (если речь о тонкопленочном датчике) W 0.15 (если речь о намоточном датчике) | ±(0.15 + 0.002 |T|) |
Класс B | DIN F 0.3 (если речь о тонкопленочном датчике) W 0.3 (если речь о намоточном датчике) | ±(0.3 + 0.005 |T|) |
Класс C | Class 2B Class BB F 0.6 (если речь о тонкопленочном датчике) W 0.6 (если речь о намоточном датчике) | ±(0.6 + 0.01 |T|) |
— | Class K 1/10 DIN | ±(0.03 + 0.0005 |T|) |
— | Class K 1/5 DIN | ±(0.06 + 0.001 |T|) |
Приведенные в таблице допуски соответствуют большинству действующих стандартов для платиновых датчиков 3850 ppm/K, включая ГОСТ и европейский DIN 60751 (IEC-751), который с большой натяжкой можно назвать общепринятым.
Например, в американском стандарте ASTM E1137 классы допуска платиновых датчиков именуются Grade и определяются иначе:
Grade A | ±(0.25 + 0.0042 |T|) |
Grade B | ±(0.13 + 0.0017 |T|) |
Если же говорить о платине с другими температурными коэффициентами или о никелевых и медных датчиках, то можно обнаружить и другие определения допусков.
Класс допуска описывает не только максимальную величину допуска, но и диапазон температур, на котором этот допуск гарантируется. Вы, наверное, уже догадались, что в разных стандартах эти диапазоны могут существенно отличаться. Это действительно так, причем диапазон температур зависит не только от класса допуска и типа датчика, но и от технологии, по которой выполнен датчик — у намоточных датчиков диапазон всегда шире.
О том, что такое намоточные и тонкопленочные датчики — чуть ниже.
На картинке — кассы допуска для платиновых датчиков с температурным коэффициентом 3850 по стандарту DIN 60751 (IEC-751).
Тонкопленочный датчик Pt 3850 ppm/K | Намоточный датчик Pt 3850 ppm/K | ||||
Класс допуска | Диапазон температур | Класс допуска | Диапазон температур | ||
DIN 60751 (IEC-751) / ГОСТ | DIN 60751 (IEC-751) | ГОСТ | |||
Класс АА (F 0.1) | 0… +150°С | Класс АА (W 0.1) | -100… +350°С | -50… +250°С | |
Класс А (F 0.15) | -30… +300°С | Класс А (W 0.15) | -100… +450°С | ||
Класс B (F 0.3) | -50… +500°С | Класс B (W 0.3) | -196… +600°С | -196… +660°С | |
Класс С (F 0.6) | -50… +600°С | Класс С (W 0.6) | -196… +600°С | -196… +660°С |
Я привожу все эти подробности о терминологии и разночтениях в стандартах чтобы донести одну простую мысль: выбирая термосопротивление легко запутаться и неверно истолковать характеристики элемента. Важно понимать какие именно требования вы предъявляете к элементу (в абсолютных цифрах, а не в классах) и сравнивать их с абсолютными цифрами из документации на конкретный датчик.
Структура термометров сопротивления
Итак, термосопротивления представляют собой резисторы, выполненные из платины или, реже, из никеля или меди. Выше уже упоминались две технологии — намоточная (проволочная) и тонкопленочная.
Намоточные датчики — это термосопротивления, выполненные на основе спиралей из металлической проволоки. Существует два основных способа изготовления намоточных датчиков. В первом случае проволока наматывается на стеклянный или керамический цилиндр, после чего конструкция покрывается изолирующим слоем из стекла. Второй способ — это помещение металлических спиралей в каналы внутри керамического цилиндра.
При изготовлении тонкопленочных датчиков на керамическую подложку напыляется тонкий слой металла, который образует токопроводящую дорожку, так называемый меандр. После этого датчик покрывается изолирующим слоем из стекла.
Большинство современных термосопротивлений выполняется по одной из этих трёх технологий. В источниках встречаются противоречивые мнения о том, какая конструкция более устойчива к вибрациям или перепадам температур. Оценки стоимости датчиков разных конструкций тоже сильно разнятся.
На деле принципиальных отличий между характеристиками датчиков разной конструкции нет, цены на тонкопленочные и намоточные датчики также находятся в одном диапазоне.
В большинстве случаев совершенно не важно как именно устроен датчик — при выборе компонента имеет значение только соотношение цены и характеристик конкретного элемента (нужно только не забывать что классы допуска для тонкопленочных датчиков определены на более узком диапазоне температур). Однако в некоторых задачах тонкопленочные датчики осознанно предпочитают намоточным. На это есть три главных причины:
Заключение
В заключении традиционно благодарю читателя за внимание и напоминаю, что вопросы по применению продукции, о которой мы пишем на хабре, можно также задавать на email, указанный в моем профиле.
upd #1: Статья «Термосопротивления: производственный процесс» опубликована.
Термометры сопротивления: виды, типы конструкции, классы допуска
Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями. Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.
Виды термодатчиков
Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):
Обозначения:
Расшифровка аббревиатур
Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:
Чем отличается термосопротивление от термопары?
Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.
Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.
Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.
Платиновые измерители температуры
Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.
Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.
Датчик термопреобразователь ТСП 5071 производства Элемер
Никелевые термометры сопротивления
Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).
Медные датчики (ТСМ)
Внешний вид термопреобразователя ТСМ 1088 1
Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.
Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.
Типовые конструкции платиновых термосопротивлений
Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.
Конструктивное исполнение «Strain free»
Обозначения:
Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.
На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.
Исполнение Hollow Annulus.
Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.
Пример исполнения «Hollow Annulus»
Обозначения:
ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.
Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.
Пленочное исполнение (Thin film).
Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.
Миниатюрный пленочный датчик
Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).
Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.
Стеклянная изоляция спирали.
В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.
Класс допуска
Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.
Таблица 1. Классы допуска.
Класс точности | Нормы допуска °C |t | | Диапазон измерения температуры | |||
Платиновые датчики | Медные | Никелевые | |||
Проволочные | Пленочные | ||||
AA | ±0,10+0,0017 | -50°C …250°C | -50°C …150°C | x | x |
A | ±0,15+0,002 | -100°C …450°C | -30°C …300°C | -50°C …120°C | x |
B | ±0,30+0,005 | -196°C …660°C | -50°C …500°C | -50°C …200°C | х |
С | ±0,60+0,01 | -196°C …660°C | -50°C …600°C | -180°C …200°C | -60°C …180°C |
Приведенная в таблице погрешность отвечает текущим нормам.
Схемы включения ТСМ/ТСП
Существует три варианта подключения:
В измерительных приборах ТС, как правило, включен по мостовой схеме.
Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха
Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.
Обслуживание
Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.
Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:
Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.
Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.
Платиновый эталонный ПТС (датчик ЭТС 100)
Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.
Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.