что такое теплоемкость материала
Теплоаккумулирующая способность материалов
Теплоаккумулирующая способность материалов, то есть способность материала удерживать тепло, оценивается удельной теплоемкостью, т.е. количеством тепла (в кДж), необходимым для повышения температуры одного килограмма материала на один градус. Например, вода имеет удельную теплоемкость, равную 4,19 кДж/(кг*K). Это значит, например, что для повышения температуры 1 кг воды на 1°K требуется 4,19 кДж.
Материал | Плотность, кг/м 3 | Теплоемкость, кДж/(кг*K) | Коэффициент теплопроводности, Вт/(м*K) | Масса ТАМ для теплоаккумулирования 1 ГДж теплоты при Δ= 20 K, кг | Относительная масса ТАМ по отношению к массе воды, кг/кг | Объем ТАМ для теплоаккумулирования 1 ГДж теплоты при Δ= 20 K, м 3 | Относительный объем ТАМ по отношению к объему воды, м 3 /м 3 |
---|---|---|---|---|---|---|---|
Гранит, галька | 1600 | 0,84 | 0,45 | 59500 | 5 | 49,6* | 4,2 |
Вода | 1000 | 4,2 | 0,6 | 11900 | 1 | 11,9 | 1 |
Глауберова соль (декагидрат сульфата натрия)* | 14600 т 1300 ж | 1,92 т 3,26 ж | 1,85 т 1,714 ж | 3300 | 0,28 | 2,26 | 0,19 |
Парафин* | 786 т | 2,89 т | 0,498 т | 3750 | 0,32 | 4,77 | 0,4 |
Плотность аккумулирования теплоты в значительной степени зависит от метода аккумулирования и рода теплоаккумулирующего материала. Она может быть аккумулирована в химически связанном виде в топливе. При этом плотность аккумулирования соответствует теплоте сгорания, кВт*ч/кг:
Теплоемкость материалов — таблица
В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания. Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.
Удельная теплоемкость материалов
Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды. Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.
Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.
Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:
Теплоемкость строительных материалов
Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.
А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.
Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.
Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.
Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.
Сравнительная характеристика теплоемкости основных строительных материалов
Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.
В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг.
Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С. Для выбранных условий рассчитываем теплоемкость выбранных материалов:
Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.
Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.
Теплоемкость и теплопроводность материалов
Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.
Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.
Удельная теплоемкость вещества
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества
c — удельная теплоемкость вещества [Дж/кг*˚C]
C — теплоемкость вещества [Дж/˚C]
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
Таблицы удельной теплоемкости веществ (газов, жидкостей и др.)
Представлены таблицы удельной теплоемкости веществ: газов, металлов, жидкостей, строительных и теплоизоляционных материалов, а также пищевых продуктов — более 400 веществ и материалов.
Удельной теплоемкостью вещества называется отношение количества тепла, сообщенного единице массы этого вещества в каком-либо процессе, к соответствующему изменению его температуры.
Удельная теплоемкость веществ зависит от их химического состава, термодинамического состояния и способа сообщения им тепла. В Международной системе единиц эта величина измеряется в Дж/(кг·К).
Необходимо отметить, что экспериментальное определение удельной теплоемкости жидкостей и газов производится при постоянном давлении или при постоянном объеме. В первом случае удельная теплоемкость обозначается Cp, во втором — Cv. Для жидкостей и газов наиболее часто применяется удельная теплоемкость при постоянном давлении Cp.
Для твердых веществ теплоемкости Cp и Cv не различаются. Кроме того, по отношению к твердым телам, помимо удельной массовой теплоемкости применяются также удельная атомная и молярная теплоемкости.
Таблица удельной теплоемкости газов
В таблице приведена удельная теплоемкость газов Cp при температуре 20°С и нормальном атмосферном давлении (101325 Па).
Газы | Cp, Дж/(кг·К) |
---|---|
Азот N2 | 1051 |
Аммиак NH3 | 2244 |
Аргон Ar | 523 |
Ацетилен C2H2 | 1683 |
Водород H2 | 14270 |
Воздух | 1005 |
Гелий He | 5296 |
Кислород O2 | 913 |
Криптон Kr | 251 |
Ксенон Xe | 159 |
Метан CH4 | 2483 |
Неон Ne | 1038 |
Оксид азота N2O | 913 |
Оксид азота NO | 976 |
Оксид серы SO2 | 625 |
Оксид углерода CO | 1043 |
Пропан C3H8 | 1863 |
Сероводород H2S | 1026 |
Углекислый газ CO2 | 837 |
Хлор Cl | 520 |
Этан C2H6 | 1729 |
Этилен C2H4 | 1528 |
Таблица удельной теплоемкости некоторых металлов и сплавов
В таблице даны значения удельной теплоемкости некоторых распространенных металлов и сплавов при температуре 20°С. Значения теплоемкости большинства металлов при других температурах вы можете найти в этой таблице.
Металлы и сплавы | C, Дж/(кг·К) |
---|---|
Алюминий Al | 897 |
Бронза алюминиевая | 420 |
Бронза оловянистая | 380 |
Вольфрам W | 134 |
Дюралюминий | 880 |
Железо Fe | 452 |
Золото Au | 129 |
Константан | 410 |
Латунь | 378 |
Манганин | 420 |
Медь Cu | 383 |
Никель Ni | 443 |
Нихром | 460 |
Олово Sn | 228 |
Платина Pt | 133 |
Ртуть Hg | 139 |
Свинец Pb | 128 |
Серебро Ag | 235 |
Сталь стержневая арматурная | 482 |
Сталь углеродистая | 468 |
Сталь хромистая | 460 |
Титан Ti | 520 |
Уран U | 116 |
Цинк Zn | 385 |
Чугун белый | 540 |
Чугун серый | 470 |
Таблица удельной теплоемкости жидкостей
В таблице представлены значения удельной теплоемкости Cp распространенных жидкостей при температуре 10…25°С и нормальном атмосферном давлении.
Жидкости | Cp, Дж/(кг·К) |
---|---|
Азотная кислота (100%-ная) NH3 | 1720 |
Анилин C6H5NH2 | 2641 |
Антифриз (тосол) | 2990 |
Ацетон C3H6O | 2160 |
Бензин | 2090 |
Бензин авиационный Б-70 | 2050 |
Бензол C6H6 | 1050 |
Вода H2O | 4182 |
Вода морская | 3936 |
Вода тяжелая D2O | 4208 |
Водка (40% об.) | 3965 |
Водный раствор хлорида натрия (25%-ный) | 3300 |
Газойль | 1900 |
Гидроксид аммония | 4610 |
Глицерин C3H5(OH)3 | 2430 |
Даутерм | 1590 |
Карборан C2H12B10 | 1720 |
Керосин | 2085…2220 |
Кефир | 3770 |
Мазут | 2180 |
Масло АМГ-10 | 1840 |
Масло ВМ-4 | 1480 |
Масло касторовое | 2219 |
Масло кукурузное | 1733 |
Масло МС-20 | 2030 |
Масло подсолнечное рафинированное | 1775 |
Масло ТМ-1 | 1640 |
Масло трансформаторное | 1680 |
Масло хлопковое рафинированное | 1737 |
Масло ХФ-22 | 1640 |
Молоко сгущенное с сахаром | 3936 |
Молоко цельное | 3906 |
Нефть | 2100 |
Парафин жидкий (при 50С) | 3000 |
Пиво | 3940 |
Серная кислота (100%-ная) H2SO4 | 1380 |
Сероуглерод CS2 | 1000 |
Силикон | 2060 |
Скипидар | 1800 |
Сливки (35% жирности) | 3517 |
Сок виноградный | 2800…3690 |
Спирт метиловый (метанол) CH3OH | 2470 |
Спирт этиловый (этанол) C2H5OH | 2470 |
Сыворотка молочная | 4082 |
Толуол C7H8 | 1130 |
Топливо дизельное (солярка) | 2010 |
Топливо реактивное | 2005 |
Уротропин C6H12N4 | 1470 |
Фреон-12 CCl2F2 | 840 |
Эфир этиловый C4H10O | 2340 |
Таблица удельной теплоемкости твердых веществ
В таблице дана удельная теплоемкость твердых веществ: стройматериалов (песка, асфальта и т.д.), теплоизоляции различных типов и других распространенных материалов в интервале температуры от 0 до 50°С при нормальном атмосферном давлении.
Таблица удельной теплоемкости пищевых продуктов
В таблице приведены значения средней удельной теплоемкости пищевых продуктов (овощей, фруктов, мяса, рыбы, хлеба, вина и т. д.) в диапазоне температуры 5…20°С и нормальном атмосферном давлении.
Кроме таблиц удельной теплоемкости, вы также можете ознакомиться с подробнейшей таблицей плотности веществ и материалов, которая содержит данные по величине плотности более 500 веществ (металлов, пластика, резины, продуктов, стекла и др.).
Теплопроводность и теплоемкость материалов
Теплопроводность
Теплопроводность – способность материала проводить тепловой поток через свою толщину при наличии разности температур на поверхностях, ограничивающих материал. Показателем теплопроводности является коэффициент теплопроводности λ. Иногда теплопроводность выражают величиной, обратной λ,— термическим сопротивлением (R = 1 / λ).
Коэффициент теплопроводности зависит от природы материала, его строения, пористости и влажности. Материал кристаллического строения обычно более теплопроводен по сравнению с материалом аморфного строения. Коэффициент теплопроводности слоистых (слоистые пластики) и волокнистых (древесина) материалов существенно зависит от направления теплового потока по отношению к слоям или волокнам. Так, у древесины вдоль волокон он примерно вдвое больше, чем поперек.
Величина λ тем больше, чем крупнее поры в материалах. Коэффициент снижается с уменьшением средней плотности однородных материалов, причем наименьшую теплопроводность имеют материалы с развитой пористостью и небольшой влажностью. При увлажнений материала теплопроводность его увеличивается, так как коэффициент теплопроводности воды примерно в 25 раз больше, чем воздуха. Ниже приводятся коэффициенты теплопроводности различных материалов, Вт / (м · °С); для сравнения даются значения λ воды и воздуха:
бетон тяжелый…………. 1,28—1,55
кирпич глиняный………. 0,70—0,85
поперек волокон 0,17
минеральная вата 0,06—0,09
Теплопроводность имеет практическое значение при выборе материалов для наружных стен, перекрытий и покрытий зданий, изоляции теплосетей, холодильников, котлов и т. п.
Теплоемкость
алюминиевые сплавы 0,90
природные каменные материалы 0,75—0,93
бетон тяжелый 0,80—0,92
Теплоемкость учитывают при определении теплоустойчивости наружных ограждений отапливаемых зданий (требуются материалы с наиболее высокой удельной теплоемкостью), при расчете подогрева составляющих бетона и раствора, также мастик для работ в зимнее время и т. п.
Тепловое расширение
Тепловое расширение – свойство материала изменять объем и размеры при нагревании. Количественно характеризуется коэффициентами объемного и линейного расширения. Коэффициент объемного расширения равен относительному увеличению объема материала, а коэффициент линейного расширения – относительному увеличению его длины при нагревании на 1 °С. Жесткое соединение нескольких материалов с разными коэффициентами теплового расширения может вызвать в конструктивном элементе значительные по величине напряжения, которые приведут к его короблению и растрескиванию. При большом изменении размеров материала из-за колебаний температуры может произойти его разрушение.
Огнестойкость – способность материала противостоять действию огня и высоких температур во время пожара. По степени огнестойкости все материалы делят на несгораемые, трудносгораемые и сгораемые.
Под действием огня или высокой температуры материалы ведут себя по-разному: несгораемые (природные каменные материалы, бетон, кирпич, сталь и т. п.) не воспламеняются, не тлеют и не обугливаются; трудносгораемые (фибролит, асфальтовый бетон, древесина, пропитанная огнезащитными составами) с трудом воспламеняются, тлеют или обугливаются в присутствии источника огня; сгораемые (незащищенная древесина, войлок, рубероид, большинство полимерных материалов) воспламеняются и продолжают гореть после удаления источника огня. Причем из числа несгораемых одни материалы (кирпич глиняный, черепица, большинство бетонов) практически не деформируются и не растрескиваются, другие – значительно деформируются (сталь), а некоторые разрушаются (гранит, мрамор, известняк).
При оценке огнестойкости материалов необходимо также учитывать совместное действие высокой температуры, воды и других жидкостей, используемых при тушении пожара, а также химических веществ и газов, выделяющихся из некоторых материалов (особенно полимерных).
Огнеупорность – свойство материала выдерживать, не расплавляясь и не деформируясь, длительное воздействие высоких температур. По степени огнеупорности материалы подразделяют на огнеупорные, тугоплавкие и легкоплавкие: огнеупорные (например, шамотный кирпич) выдерживают продолжительное воздействие температуры свыше 1580 °C (используют для внутренней облицовки промышленных печей), тугоплавкие (гжельский кирпич) выдерживают температуру 1350—1580 °С, легкоплавкие (кирпич глиняный обыкновенный) противостоят температуре ниже 1350 °С.
Электропроводность – способность материала проводить электрический ток. Она зависит от обратного электропроводности свойства – электрического сопротивления. Очевидно, что чем меньше удельное электрическое сопротивление материала, тем лучше он проводит электрический ток. В зависимости от этого показателя все материалы подразделяют на проводники, полупроводники и изоляторы. К проводникам относятся серебро, медь и ее сплавы, алюминий, сталь. Хорошими изоляторами являются резина, асбест, фарфор, стекло, пластические массы. Полупроводники (кремний, мышьяк и др.) занимают промежуточное положение между проводниками и изоляторами; в обычных условиях они слабо проводят электрический ток. Полупроводники широко применяются в различных отраслях народного хозяйства, в частности для регулирования силы тока и напряжения, преобразования одного вида энергии в другой.
Электропроводность и соответственно электрическое сопротивление материалов учитывают при оценке качества и выборе шнуров, проводов, кабелей, электроустановочных и других изделий.
Цвет материалов – это определенное зрительное ощущение, вызываемое в результате воздействия на глаз потоков электромагнитного излучения в диапазоне видимой части спектра. В общем случае цвет материала связан с его окраской, свойствами поверхности и оптическими свойствами источников света. Цвет играет большую роль при выборе облицовочных и отделочных материалов.
Структура – строение материала, определенное сочетание его составных частей. В структуре материалов различают структуру горной породы, структуру металла и др.
Фактура (от латинского фактура – обработка, строение) – видимое строение поверхности материала. Различают две группы фактур: рельефные (с разной высотой и разнообразным характером рельефа) и гладкие (от зеркально-блестящих до шероховато-ровных).
Цвет, структура и фактура различных материалов более подробно рассмотрены при их характеристике в соответствующих главах книги.