что такое сто в физике
Основы специальной теории относительности
Специальная теория относительности (СТО) – физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности СТО проявляются при больших (сравнимых со скоростью света) скоростях. Законы классической механики в этом случае не работают. Причина этого заключается в том, что передача взаимодействий происходит не мгновенно, а с конечной скоростью (скоростью света).
Классическая механика является частным случаем СТО при небольших скоростях. Явления, описываемые СТО и противоречащие законам классической физики, называют релятивистскими. Согласно СТО одновременность событий, расстояния и промежутки времени являются относительными.
В любых инерциальных системах отсчета при одинаковых условиях все механические явления протекают одинаково (принцип относительности Галилея). В классической механике измерение времени и расстояний в двух системах отсчета и сравнение этих величин считаются очевидными. В СТО это не так.
События являются одновременными, если они происходят при одинаковых показаниях синхронизированных часов. Два события, одновременные в одной инерциальной системе отсчета, не являются одновременными в другой инерциальной системе отсчета.
Инвариантность скорости света. Принцип относительности Эйнштейна
В 1905 г. Эйнштейн создал специальную теорию относительности (СТО). В основе его теории относительности лежат два постулата:
Первый постулат распространяет принцип относительности на все явления, включая электромагнитные. Проблема применимости принципа относительности возникла с открытием электромагнитных волн и электромагнитной природы света. Постоянство скорости света приводит к несоответствию с законом сложения скоростей классической механики. По мысли Эйнштейна, изменения характера взаимодействия при смене системы отсчета не должно происходить. Первый постулат Эйнштейна непосредственно вытекает из опыта Майкельсона–Морли, доказавшего отсутствие в природе абсолютной системы отсчета. В этом опыте измерялась скорость света в зависимости от скорости движения приемника света. Из результатов этого опыта следует и второй постулат Эйнштейна о постоянстве скорости света в вакууме, который вступает в противоречие с первым постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и правило сложения скоростей. Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.
Следствия из постулатов СТО
Если проводить сравнение расстояний и показаний часов в разных системах отсчета с помощью световых сигналов, то можно показать, что расстояние между двумя точками и длительность интервала времени между двумя событиями зависят от выбора системы отсчета.
где \( I_0 \) – длина тела в системе отсчета, относительно которой тело покоится, \( l \) – длина тела в системе отсчета, относительно которой тело движется, \( v \) – скорость тела.
Это означает, что линейный размер движущегося относительно инерциальной системы отсчета уменьшается в направлении движения.
Относительность промежутков времени:
где \( \tau_0 \) – промежуток времени между двумя событиями, происходящими в одной точке инерциальной системы отсчета, \( \tau \) – промежуток времени между этими же событиями в движущейся со скоростью \( v \) системе отсчета.
Это означает, что часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).
Закон сложения скоростей в СТО записывается так:
где \( v \) – скорость тела относительно неподвижной системы отсчета, \( v’ \) – скорость тела относительно подвижной системы отсчета, \( u \) – скорость подвижной системы отсчета относительно неподвижной, \( c \) – скорость света.
При скоростях движения, много меньших скорости света, релятивистский закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчета (принцип соответствия).
Для описания процессов в микромире классический закон сложения неприменим, а релятивистский закон сложения скоростей работает.
Полная энергия
Полная энергия \( E \) тела в состоянии движения называется релятивистской энергией тела:
Полная энергия, масса и импульс тела связаны друг с другом – они не могут меняться независимо.
Закон пропорциональности массы и энергии – один из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами.
Важно!
Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи.
Энергия покоя
Наименьшей энергией \( E_0 \) тело обладает в системе отсчета, относительно которой оно покоится. Эта энергия называется энергией покоя:
Энергия покоя является внутренней энергией тела.
В СТО масса системы взаимодействующих тел не равна сумме масс тел, входящих в систему. Разность суммы масс свободных тел и массы системы взаимодействующих тел называется дефектом масс – \( \Delta m \) . Дефект масс положителен, если тела притягиваются друг к другу. Изменение собственной энергии системы, т. е. при любых взаимодействиях этих тел внутри нее, равно произведению дефекта масс на квадрат скорости света в вакууме:
Экспериментальное подтверждение связи массы с энергией было получено при сравнении энергии, высвобождающейся при радиоактивном распаде, с разностью масс исходного ядра и конечных продуктов.
Кинетическая энергия тела (частицы) равна:
Важно!
В классической механике энергия покоя равна нулю.
Релятивистский импульс
Релятивистским импульсом тела называется физическая величина, равная:
где \( E \) – релятивистская энергия тела.
Для тела массой \( m \) можно использовать формулу:
В экспериментах по исследованию взаимодействий элементарных частиц, движущихся со скоростями, близкими к скорости света, подтвердилось предсказание теории относительности о сохранении релятивистского импульса при любых взаимодействиях.
Важно!
Закон сохранения релятивистского импульса является фундаментальным законом природы.
Классический закон сохранения импульса является частным случаем универсального закона сохранения релятивистского импульса.
Полная энергия \( E \) релятивистской частицы, энергия покоя \( E_0 \) и импульс \( p \) связаны соотношением:
Из него следует, что для частиц с массой покоя, равной нулю, \( E_0 \) = 0 и \( E=pc \) .
Постулаты СТО
СТО (специальная теория относительности) – это современная физическая теория пространства и времени.
Теория относительности совместно с такой наукой как квантовая механика, является теоретической базой для развития современной физики и техники. СТО также носит название релятивистской теории; явления же, специфику которых рассматривает эта теория, называют релятивистскими эффектами. Создателем теории относительности является Альберт Эйнштейн.
Предпосылки к появлению СТО
Механический принцип относительности (называемый также принципом относительности Галилея): законы динамики едины для всех инерциальных систем отсчета.
При этом изначально существует предположение о совпадении осей координат обеих систем в начальный момент.
Следствием преобразований Галилея является классический закон преобразования скоростей при переходе из одной системы отсчета в другую:
Тело во всех инерциальных системах при этом имеет одинаковые ускорения:
Из сказанного можно заключить, что уравнение движения, являющееся одной из основ классической механики (второй закон Ньютона), m a → = F → сохраняет свой вид при переходе из одной инерциальной системы в другую.
Опыт Майкельсона–Морли, в последующем повторяемый множество раз, давал однозначный отрицательный результат. В результате анализа результатов опыта Майкельсона–Морли, а также некоторых других экспериментов стало возможным утверждать ошибочность представления об эфире как среде, в которой распространяются световые волны. Т.е., для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не влияет на оптические явления на Земле.
Значимое влияние на развитие представлений о пространстве и времени оказала теория Максвелла. В начале XX века данная теория являлась общепризнанной. Теория Максвелла предсказывала электромагнитные волны, которые распространялись с конечной скоростью, и эта гипотеза получила практическое применение в 1895 году, когда А. С. Попов изобрел радио. Но также теория Максвелла гласит, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета обладает одним и тем же значением, равным скорости света в вакууме.
Основные принципы СТО
Таким образом, на границе XIX и XX веков в развитии физики возник серьезный кризис. Выход нашел А.Эйнштейн, отказавшись, как это часто случается в случае величайших открытий, от классического видения. В данном случае, речь шла о классических представлениях о пространстве и времени. Важнейшим шагом здесь стал иной взгляд на понятие абсолютного времени, которое использовалось в классической физике. Привычные представления, казавшиеся логичными и очевидными, по факту показали свою несостоятельность. Множество понятий и величин, в нерелятивистской физике считавшихся абсолютными или не имеющими зависимости от системы отсчета, в теории относительности оказались переведенными в разряд относительных.
Основой специальной теории относительности являются принципы или постулаты, которые Эйнштейн сформулировал в 1905 году.
Принципы СТО:
Указанные принципы необходимо расценивать в качестве обобщения всей совокупности экспериментальных фактов. Выводы и следствия из теории, основанной на данных принципах, получили подтверждение в ходе огромного количества опытных проверок. Специальная теория относительности дала возможность найти ответы на все вопросы «доэйнштейновской» физики и дать объяснение противоречивым результатам уже имеющихся тогда опытов в области электродинамики и оптики. Впоследствии теория относительности получила подкрепление в виде экспериментальных данных, которые были получены в процессе изучения движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.
Теория относительности для чайников
В 1905 году Альберт Эйнштейн опубликовал специальную теорию относительности (СТО), которая объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу.
Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета.
Так что, если два космонавта, вы и, допустим, Герман, летите на двух космических кораблях и хотите сравнить ваши наблюдения, единственное, что вам нужно знать – это ваша скорость относительно друг друга.
Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно.
Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает общая теория относительности (ОТО), которая объясняет движения материальных тел в общем случае.
Теория Эйнштейна базируется на двух основных принципах:
1. Принцип относительности: физические законы сохраняются даже для тел, являющихся инерциальными системами отсчета, т. е. двигающимися на постоянной скорости относительно друг друга.
2. Принцип скорости света: скорость света остается неизменной для всех наблюдателей, независимо от их скорости по отношению к источнику света. (Физики обозначают скорость света буквой с).
Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.
В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная.
Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру.
Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.
Однородность пространства и времени
В СТО Эйнштейна постулируется фундаментальная связь между пространством и временем. Материальная Вселенная, как известно, имеет три пространственных измерения: вверх-вниз, направо-налево и вперед-назад. К нему добавляется еще одно измерение – временное. Вместе эти четыре измерения составляют пространственно-временной континуум.
Если вы двигаетесь с большой скоростью, ваши наблюдения относительно пространства и времени будут отличаться от наблюдений других людей, движущихся с меньшей скоростью.
На картинке представлен мысленный эксперимент, который поможет понять эту идею.
Представьте себе, что вы находитесь на космическом корабле, в руках у вас лазер, с помощью которого вы посылаете лучи света в потолок, на котором закреплено зеркало. Свет, отражаясь, падает на детектор, который их регистрирует.
Сверху – вы послали луч света в потолок, он отразился и вертикально упал на детектор.
Снизу – для Германа ваш луч света двигается по диагонали к потолку, а затем – по диагонали к детектору
Допустим, ваш корабль двигается с постоянной скоростью, равной половине скорости света (0.5c). Согласно СТО Эйнштейна, для вас это не имеет значения, вы даже не замечаете своего движения.
Однако Герман, наблюдающий за вами с покоящегося звездолета, увидит совершенно другую картину. С его точки зрения, луч света пройдет по диагонали к зеркалу на потолке, отразится от него и по диагонали упадет на детектор.
Другими словами, траектория луча света для вас и для Германа будет выглядеть по-разному и длина его будет различной. А стало быть и длительность времени, которое требуется лазерному лучу для прохождения расстояния к зеркалу и к детектору, будет вам казаться различным.
Это явление называется замедлением времени: время на звездолете, движущимся с большой скоростью, с точки зрения наблюдателя на Земле течет значительно медленнее.
Этот пример, равно как и множество других, наглядно демонстрирует неразрывную связь между пространством и временем. Эта связь явно проявляется для наблюдателя, только когда речь идет о больших скоростях, близких к скорости света.
Эксперименты, проведенные со времени публикации Эйнштейном своей великой теории, подтвердили, что пространство и время действительно воспринимаются по-разному в зависимости от скорости движения объектов.
Объединение массы и энергии
В своей знаменитой статье, опубликованной в 1905 году, Эйнштейн объединил массу и энергию в простой формуле, которая с тех пор известна каждому школьнику: E=mc^2.
Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными.
Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.
До Эйнштейна концепции массы и энергии в физике рассматривались по отдельности. Гениальный ученый доказал, что закон сохранения массы, как и закон сохранения энергии, являются частями более общего закона массы-энергии.
Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.
Специальная теория относительности
СТО, также известная как частная теория относительности является проработанной описательной моделью для отношений пространства-времени, движения и законов механики, созданная в 1905 году лауреатом Нобелевской премии Альбертом Эйнштейном.
Поступая на отделение теоретической физики Мюнхенского университета, Макс Планк обратился за советом к профессору Филиппу фон Жолли, руководившему в тот момент кафедрой математики этого университета. На что он получил совет: «в этой области почти всё уже открыто, и всё, что остаётся – заделать некоторые не очень важные проблемы». Юный Планк ответил, что он не хочет открывать новые вещи, а только хочет понять и систематизировать уже известные знания. В итоге из одной такой «не очень важной проблемы» впоследствии возникла квантовая теория, а из другой – теория относительности.
Формирование теории
Формула теории относительности
В отличие от многих других теорий, полагавшихся на физические эксперименты, теория Эйнштейна практически полностью была основана на его мысленных экспериментах и только впоследствии была подтверждена на практике. Так ещё в 1895 году (в возрасте всего 16 лет) он задумался о том, что будет, если двигаться параллельно лучу света с его скоростью? В такой ситуации получалось, что для стороннего наблюдателя частицы света должны были колебаться вокруг одной точки, что противоречило уравнениям Максвелла и принципу относительности (который гласил, что физические законы не зависят от места где вы находитесь и скорости с которой вы движетесь). Таким образом юный Эйнштейн пришёл к выводу, что скорость света должна быть недостижима для материального тела, а в основу будущей теории был заложен первый кирпичик.
Следующий эксперимент был проведён им в 1905 году и заключался в том, что на концах движущегося поезда находятся два импульсных источника света которые зажигаются в одно время. Для стороннего наблюдателя, мимо которого проходит поезд, оба этих события происходят одновременно, однако для наблюдателя, находящегося в центре поезда эти события будут казаться произошедшими в разное время, так как вспышка света из начала вагона придёт раньше, чем из его конца (в следствии постоянности скорости света).
Мысленный эксперимент с поездом
Из этого он сделал весьма смелый и далеко идущий вывод, что одновременность событий является относительной. Полученные на основе этих экспериментов расчёты он опубликовал в работе «Об электродинамике движущихся тел». При этом для движущегося наблюдателя один из этих импульсов будет иметь большую энергию нежели другой. Для того чтобы в такой ситуации не нарушался закон сохранения импульса при переходе от одной инерциальной системы отсчёта к другой необходимо было чтобы объект одновременно с потерей энергии должен был терять и массу. Таким образом Эйнштейн пришёл к формуле характеризующую взаимосвязь массы и энергии E=mc 2 – являющейся, пожалуй, самой известной физической формулой на данный момент. Результаты этого эксперимента были опубликованы им позднее в том же году.
Основные постулаты
Уравнения теории относительности: скорость, время и длинна объекта относительно механики Ньютона
Постоянство скорости света – к 1907 году были произведены эксперименты по измерению скорости света с точностью ±30 км/с (что было больше орбитальной скорости Земли) не обнаружившие её изменения в ходе года. Это стало первым доказательством неизменности скорости света, которое в последствии было подтверждено множеством других экспериментов, как экспериментаторами на земле, так и автоматическими аппаратами в космосе.
Принцип относительности – этот принцип определяет неизменность физических законов в любой точке пространства и в любой инерциальной системе отсчёта. То есть в независимости от того движетесь ли вы со скоростью около 30 км/с по орбите Солнца вместе с Землёй или в космическом корабле далеко за её пределами – ставя физический эксперимент вы всегда будете приходить к одним и тем же результатам (если ваш корабль в это время не ускоряется или замедляется). Этот принцип подтверждался всеми экспериментами на Земле, и Эйнштейн разумно счёл этот принцип верным и для всей остальной Вселенной.
Следствия
Путём расчётов на основе этих двух постулатов Эйнштейн пришёл к выводу, что время для движущегося в корабле наблюдателя должно замедляться с увеличением скорости, а сам он вместе с кораблём должен сокращаться в размерах в направлении движения (для того чтобы скомпенсировать тем самым эффекты от движения и соблюсти принцип относительности). Из условия конечности скорости для материального тела вытекало также что правило сложения скоростей (имевшее в механике Ньютона простой арифметический вид) должно быть заменено более сложными преобразованиями Лоренца – в таком случае даже если мы сложим две скорости в 99% от скорости света мы получим 99,995% от этой скорости, но не превысим её.
Статус теории
Материалы по теме
Скорость света в вакууме
Первенство в открытии
Когда Эйнштейн опубликовал свои первые работы по специальной теории относительности и приступил к написанию её общей версии, другими учёными уже была открыта значительная часть формул и идей, заложенных в основе этой теории. Так скажем преобразования Лоренца в общем виде были впервые получены Пуанкаре в 1900 году (за 5 лет до Эйнштейна) и были названы так в честь Хендрика Лоренца получившего приближённую версию этих преобразований, хотя даже в этой роли его опередил Вольдемар Фогт.
Пуанкаре также работал над созданием теории относительности и пришёл к принципу относительности и 4-мерному пространству-времени на несколько лет раньше Эйнштейна, но так как ему не хватило смелости в своих расчётах отказаться от эфира, то прийти к верному решению ему так и не удалось.
Таким образом многие учёные сходятся к выводу что, если бы даже Эйнштейна и не было, к равенству инерционной и гравитационной массы и ряду других деталей необходимых для построения теории относительности вскоре должен был бы прийти один из других исследователей. Однако на момент публикации ОТО в 1915 году никем другим этих последних шагов не было сделано, так что первенство в создании теории относительности Эйнштейном никто из серьёзных учёных на данный момент не оспаривает.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!