что такое стандартный вид многочлена в алгебре 7 класс
Многочлен. Упрощение, степень, стандартный вид, нуль-многочлены
Содержание
Мы с вами уже разобрали, чем являются одночлены, и выяснили, что при произведении одночленов также получится одночлен. Однако совсем иная ситуация обстоит с суммой одночленов. Давайте рассмотрим на примере:
Если данные выражения не являются одночленами, то какое название мы можем им дать? Все просто – такие примеры называют многочленами.
Многочлены – это выражения, которые являются суммой нескольких одночленов.
Упрощение многочленов
Многочлены могут быть как небольшими, так и состоящими из нескольких частей. Давайте рассмотрим несколько примеров таких выражений:
В выражениях может находиться несколько подобных членов, что позволяет упростить само выражение. В данном выражении мы можем увидеть подобные одночлены, которые закрашены одинаковыми цветами:
Для упрощения такого многочлена нам нужно использовать правило подобных слагаемых, т.е. произвести отдельные арифметические действия над каждой подобной частью. В конце у нас получится такое выражение:
Такое упрощение называют приведением подобных членов многочлена. Это преобразование позволяет заменить многочлен на тождественно равный ему, но более простой – с меньшим количество членов.
Стандартный вид многочленов
Многочлен, состоящий из одночленов стандартного вида, расположенных в порядке убывания степеней и среди которых нет подобных, называют многочленом стандартного вида.
Одночлены в многочлене стандартного вида располагают в порядке убывания их степени, а свободный одночлен записывают в самом конце. Для примера можно привести следующие выражения:
Стоит отметить, что любой многочлен можно привести к стандартному виду, если привести подобные. То есть из выражения нестандартного вида:
Мы можем получить выражение стандартного вида:
Степень многочлена
Рассмотрим многочлен стандартного вида:
Степенью многочлена стандартного вида называют наибольшую из степеней одночленов, из которых этот многочлен составлен.
Давайте рассмотрим еще несколько примеров многочленов с их степенями:
$\color
$\color
$\color
Коэффициенты многочленов
Выделенные числа и будут являться коэффициентами переменных множителей.
Нуль-многочлены
Число 0, а также многочлены, которые тождественно равны нулю, называют нуль-многочленами. Примеры таких выражений:
Их не относят к многочленам стандартного вида и считается, что нуль-многочлены не имеют степени.
Многочлен стандартного вида
Определение многочлена
Многочлен — это сумма одночленов. Получается, что многочлен — не что иное, как несколько одночленов, собранных «под одной крышей».
Одночлен — это частный случай многочлена.
Рассмотрим примеры многочленов:
Если многочлен состоит из двух одночленов, его называют двучленом:
Многочлен — это сумма одночленов, поэтому знак «минус» относится к числовому коэффициенту одночлена. Именно поэтому мы записываем – 3×2, а не просто 3×2.
Этот же многочлен можно записать вот так:
Это значит, что каждый одночлен важно рассматривать вместе со знаком, который перед ним стоит.
Многочлен вида 10x – 3×2 + 7 называется трехчленом.
Линейный двучлен — это многочлен первой степени: ax + b. a и b здесь — некоторые числа, x — переменная.
Если разделить многочлен с переменной x на линейный двучлен x – b (где b — некоторое положительное или отрицательное число) — остаток будет только многочленом нулевой степени. То есть некоторым числом N, которое можно определить без поиска частного.
Если многочлен содержит обычное число — это число является свободным членом многочлена.
Свободный член многочлена не имеет буквенной части. Кроме того, любое числовое выражение — это многочлен. Например, вот такие числовые выражения — тоже многочлены:
Такие выражения состоят из свободных членов.
Многочлен стандартного вида
Недостаточно просто знать, что такое многочлен и что такое одночлен. Это целая алгебраическая экосистема, где у всего есть названия, определения и особенности.
Давайте разберемся, что такое многочлен стандартного вида. Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.
Получается, что всякий многочлен можно привести к стандартному виду. Таким образом можно получить многочлен, работать с которым гораздо проще и приятнее.
К стандартному виду многочлен приводится очень просто. Нужно лишь привести в нем подобные слагаемые.
Подобные слагаемые — это подобные члены многочлена. Приведение подобных слагаемых в многочлене — приведение его подобных членов. Тут же возникает резонный вопрос: Что такое подобные члены многочлена? Это члены с одинаковой буквенной частью.
Давайте разберем на примере, как «нестандартный» многочлен приводится к стандартному виду.
Дан красавец многочлен: 3x + 5xy2 + x – xy2
Приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Как видите, в получившемся многочлене нет подобных членов. Такой многочлен — это многочлен стандартного вида.
Степень многочлена
Многочлен может иметь степень — имеет на это полное право.
Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов.
Из определения можно сделать вывод, что степень многочлена возможно определить только после приведения его к стандартному виду.
Рассмотрим на примере:
Дан многочлен 6x + 4xy2 + x + xy2
Сначала приводим многочлен к стандартному виду — для этого приводим подобные слагаемые:
Получаем многочлен стандартного вида 6x + 4xy2 + x + xy2 = 7x + 5xy2.
Отсюда делаем вывод, что многочлен 7x + 5xy2 — многочлен второй степени.
Кроме того, можно сделать вывод, что и исходный многочлен 6x + 4xy2 + x + xy2 — многочлен второй степени, поскольку оба многочлена равны друг другу.
В некоторых случаях необходимо сначала привести к стандартному виду одночлены многочлена, а затем уже и сам многочлен.
Пример:
Получившийся многочлен без труда приводим к стандартному виду. Приводим подобные слагаемые:
Коэффициенты многочлена
Коэффициенты членов многочлена — это числа, которые указаны перед переменными множителями. Если перед переменной нет числа, то коэффициент этого члена = 1.
Иными словами — коэффициенты членов многочлена — это члены многочлена, представленные в виде стандартных одночленов.
Например:
Все одночлены имеют стандартный вид. 2, 5 и 18 — коэффициенты членов данного многочлена.
Кажется, со стандартным видом многочлена все понятно. Чтобы без труда приводить любой многочлен к стандартному виду, нужно потренироваться, ведь в 7 классе только и разговоров, что о многочленах. Давайте разберем несколько примеров. Попробуйте решить их самостоятельно, сверяясь с ответами.
Задание раз. Приведите многочлен к стандартному виду и определите его степень: 4x + 6xy2 + x – xy2.
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Получаем многочлен стандартного вида: 4x + 6xy2 + x – xy2 = 5x + 5xy2.
Ответ: стандартный вид многочлена 5x + 5xy2. Данный многочлен — многочлен второй степени.
Многочлен приведен к стандартному виду.
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Разобраться в многочленах не так-то просто. В этой теме немало нюансов и подводных камней. Чтобы не запутаться в множестве похожих одно на другое определений, побольше практикуйтесь. Чтобы перейти на следующую ступень и начать выполнение арифметических действий с многочленами, важно научиться приводить многочлен к стандартному виду.
Алгебра. 7 класс
Конспект урока
Многочлены стандартного вида
Перечень рассматриваемых вопросов:
Многочлен стандартного вида – это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов.
Многочлен, состоящий из двух членов, называется двучленом.
Многочлен, состоящий из трёх членов, называется трёхчленом.
Степенью многочлена стандартного вида называют наибольшую из степеней одночленов, входящих в этот многочлен.
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
«Единственный путь, ведущий к знанию, – это деятельность», – сказал однажды ирландский драматург Джордж Бернард Шоу.
Сегодня наша деятельность будет заключаться в том, чтобы привести многочлен к стандартному виду.
Начнём с того, что вспомним, что такое многочлен.
Многочлен – это сумма одночленов.
Многочлен стандартного вида – это многочлен, каждый член которого является одночленом стандартного вида и который не содержит подобных членов.
Например, так могут выглядеть многочлены, приведённые к стандартному виду:
12a 2 bc 3 + ху 4 + 1,2ср 8 (трёхчлен)
2,5ас – 3к 2 х 5 (двучлен)
В них каждый член многочлена записан в стандартном виде, и ему нет подобных.
Стоит отметить, что многочлены могут иметь свои названия.
Например, многочлен, состоящий из двух членов, называется двучленом, из трёх членов – трёхчленом и т.д.
А так могут выглядеть многочлены нестандартного вида:
2abаc 3 + хху 4 + 1,2ср 8
2,5аса – 3к 2 х 5 к + 16
В этом случае некоторые члены многочленов находятся не в стандартном виде.
Рассмотрим правило приведения многочлена к стандартному виду:
1)каждый член многочлена нужно привести к стандартному виду;
2)привести подобные члены.
Пример:
Приведите к стандартному виду многочлен:
Следуя 1 пункту правила, приведём все члены многочлена к стандартному виду, но в данном задании все члены уже записаны в стандартном виде, т.е. вначале стоит число, а затем буквы в алфавитном порядке.
Следуя 2 пункту правила, приведём подобные члены. В данном многочлене они есть, выделим их.
В результате преобразования получается многочлен, записанный в стандартном виде.
Следуя данному правилу, любой многочлен можно привести к стандартному виду.
Рассмотрим ещё одно подобное задание.
Приведём к стандартному виду многочлен:
Решение: 3ab + 7c 2 –3ab – 7сс = 3ab + 7c 2 – 3ab – 7с 2 = 0
Следуя 1 пункту правила, приведём все члены многочлена к стандартному виду, в задании один член записан не в стандартном виде.
Следуя 2 пункту правила, приведём подобные члены. В многочлене они есть, выделим их.
В результате преобразования получается многочлен, записанный в стандартном виде, равный нулю. Такие многочлены называются нулевыми.
Введём ещё одно понятие, связанное с многочленами в стандартном виде – это степень многочлена.
Степенью многочлена стандартного вида называют наибольшую из степеней одночленов, входящих в этот многочлен.
12a 2 bc 3 + 7кх – многочлен 6 степени,
у данных многочленов степень соответственно шесть и семь. Т. к. у первого многочлена степени одночленов 6 и 2. А у второго многочлена степени одночленов 7, 1, 0. Выбираем большую степень и получаем степень многочлена.
Про первый многочлен говорят, что это многочлен шестой степени.
А про второй многочлен можно сказать – многочлен седьмой степени.
Если при выполнении заданий встретится многочлен с одинаковыми степенями слагаемых, например:
а + с
говорят, «это многочлен первой степени относительно а и с».
Стоит отметить, что, если все члены многочлена стандартного вида содержат одну и ту же букву, их принято располагать в многочлене от большей степени к меньшей, при этом свободный член ставится на последнее место.
Например, так будет выглядеть запись многочлена в стандартном виде:
2а 3 + 3а 2 – 6а + 12.
Итак, сегодня мы получили представление о том, как приводить многочлен в стандартный вид.
Это интересно!
Мы уже знаем, что многочлен – это сумма одночленов, которые, в свою очередь, представляют собой произведение числовых и буквенных множителей.
Самое интересное заключается в том, что многочлены иногда имеют специфические названия. Например, многочлен, состоящий из одного одночлена, можно назвать моном. Мономом можно назвать такие многочлены: 7 или а.
Если многочлен состоит из двух слагаемых, т.е. двух одночленов, то мы знаем, что это двучлен, но его ещё можно назвать бином, например, 12а + 5 – есть бином.
Если многочлен состоит из трёх слагаемых, т.е. трёх одночленов, то мы знаем, что это трёхчлен, но его ещё можно назвать трином, например, 12а 2 + а + 5.
Если слагаемых в многочлене больше трёх, то говорят просто – многочлен.
Кстати, при записи многочлен обозначают буквой «Р», от греческого слова «poly» – «многий», «многочисленный», поэтому многочлены в математике называют также полиномами.
Разбор заданий тренировочного модуля.
1. Найдите степень многочлена 5ах + 2а
Решение: сначала нужно посмотреть степень каждого члена многочлена.
У одночлена 5ах степень 2
У одночлена 2а степень 1. Так как наибольшая степень 2, то она и будет являться степенью данного многочлена.
2) Выберите и подставьте вместо * такой одночлен, чтобы многочлен получился 5 степени
7x 4 + 12x 3 – 3x 2 + 1 + *
Для начала нужно определить исходные степени всех членов многочлена.
У одночлена 7x 4 степень 4.
У одночлена 12x 3 степень 3.
У одночлена – 3x 2 степень 2.
У одночлена 1 степень 0. Следовательно, в данном случае нет одночлена со степенью 5. Посмотрим варианты ответа и выберем ответ с нужной нам степенью 5.
У одночлена 5х степень 1
У одночлена 2асх степень 3
У одночлена а 2 ск 2 степень 5. Это и есть верный ответ.
Что такое стандартный вид многочлена в алгебре 7 класс
Определение. Многочленом называется сумма одночленов.
Если многочлен состоит из двух членов, его называют двучленом, если из трех членов — трехчленом. Одночлены считают многочленами, состоящими из одного члена.
В многочлене члены являются подобными слагаемыми, так как они имеют одну и ту же буквенную часть. Подобными слагаемыми являются и члены 2 и — 7, не имеющие буквенной части. Подобные слагаемые в многочлене называют подобными членами многочлена.
Сумму подобных членов можно заменить одним членом, сложив их коэффициенты и оставив ту же буквенную часть. Такое тождественное преобразование многочленов называют приведением подобных членов.
Многочлен не содержит подобных членов, и каждый его член является одночленом стандартного вида. Такой многочлен называют многочленом стандартного вида.
Любой многочлен можно привести к стандартному виду. Для этого нужно каждый его член представить в стандартном виде и привести подобные члены.
Членами многочлена стандартного вида служат одночлены второй, пятой и нулевой степени. Наибольшую из этих степеней называют степенью многочлена. Таким образом, многочлен стандартного вида является многочленом пятой степени.
Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. Степенью многочлена, не записанного в стандартном виде, называют степень тождественно равного ему многочлена стандартного вида.
Степень многочлена равна двум, поэтому и степень многочлена равна двум.
СЛОЖЕНИЕ И ВЫЧИТАНИЕ МНОГОЧЛЕНОВ
Составим сумму многочленов
Раскроем скобки и приведем подобные члены. Получим:
Составим разность многочленов :
После раскрытия скобок и приведения подобных членов получим:
Таким образом, при сложении и вычитании многочленов снова получается многочлен.
Иногда требуется несколько членов многочлена заключить в скобки. Тогда:
если перед скобками ставят знак «плюс», то члены, которые заключают в скобки, пишут с теми же знаками;
если перед скобками ставят знак «минус», то члены, заключаемые в скобки, пишут с противоположными знаками.
Полученные равенства являются тождествами. Убедиться в этом можно, раскрыв скобки в правой части каждого равенства.
УМНОЖЕНИЕ ОДНОЧЛЕНА НА МНОГОЧЛЕН
Составим произведение одночлена и многочлена
Преобразуем это произведение, используя распределительное свойство умножения:
Вообще, произведение одночлена и многочлена можно представить в виде многочлена.
При умножении одночлена на многочлен пользуются правилом:
Чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена и полученные произведения сложить.
При умножении одночлена на многочлен запись можно вести короче. Например,
Умножение одночлена на многочлен применяется при решении уравнений. Приведем примеры.
Пример 1. Решим уравнение Преобразуем левую часть уравнения, воспользовавшись правилом умножения одночлена на многочлен. Получим уравнение
Пример 2. Решим уравнение
Умножив обе части уравнения на наименьшее общее кратное знаменателей дробей, т. е. на число 18, получим:
ВЫНЕСЕНИЕ ОБЩЕГО МНОЖИТЕЛЯ ЗА СКОБКИ
Каждый член многочлена можно заменить произведением двух множителей, один из которых равен :
Представление многочлена в виде произведения двух или нескольких многочленов (среди которых могут быть и одночлены) называют разложением многочлена на множители. Такое преобразование используется при решении уравнений, в вычислениях и в других случаях.
Примененный нами способ разложения многочлена на множители называют вынесением общего множителя за скобки.
Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена.
выносят с наименьшим показателем» который она имеет в данном многочлене. Если все коэффициенты многочлена — целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.
Покажем, как вынесение множителя за скобки применяется при решении уравнений.
Решим, например, уравнение
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, т. е. когда
Следовательно, произведение обращается в нуль при и при т. е. уравнение
Многочлены
Определения и примеры
Многочлен — это сумма одночленов.
Например, выражение 2x + 4xy 2 + x + 2xy 2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».
Но это действие нагромождает многочлен скобками, поэтому вычитание на сложение не заменяют, учитывая в будущем, что каждый одночлен многочлена будет рассматриваться вместе со знаком, который перед ним располагается.
Одночлены, из которых состоит многочлен, называют членами многочлена.
Если многочлен состоит из двух членов, то такой многочлен называют двучленом. Например, многочлен x + y является двучленом.
Если многочлен состоит из трёх членов, то такой многочлен называют трехчленом. Например, многочлен x + y + z является трехчленом.
Если какой-нибудь многочлен содержит обычное число, то это число называют свободным членом многочлена. Например, в многочлене 3x + 5y + z + 7 член 7 является свободным членом. Свободный член многочлена не содержит буквенной части.
Многочленом также является любое числовое выражение. Так, следующие выражения являются многочленами:
Сложение многочленов
К многочлену можно прибавить другой многочлен. Например, прибавим к многочлену 2x + y многочлен 3x + y.
Заключим в скобки каждый многочлен и соединим их знаком «плюс», указывая тем самым, что мы складываем многочлены:
Теперь раскрываем скобки:
Далее приведём подобные слагаемые:
Таким образом, при сложении многочленов 2x + y и 3x + y получается многочлен 5x + 2y.
Разрешается также сложение многочленов в столбик. Для этого их следует записать так, чтобы подобные слагаемые располагались друг под другом, затем выполнить самó сложение. Решим предыдущий пример в столбик:
Если в одном из многочленов окажется слагаемое, которое не имеет подобного слагаемого в другом многочлене, оно переносится к результату без изменений. Как говорят при сложении обычных чисел — «сносится».
Решим этот же пример с помощью скобок:
Пример 3. Сложить многочлены 7x 3 + y + z 2 и x 3 − z 2
Решим этот пример в столбик. Запишем второй многочлен под первым так, чтобы подобные слагаемые располагались друг под другом:
Решим этот же пример с помощью скобок:
Вычитание многочленов
Заключим в скобки каждый многочлен и соединим их знаком «минус», указывая тем самым, что мы выполняем вычитание:
Теперь раскроем скобки:
Приведём подобные слагаемые. Слагаемые y и −y являются противоположными. Сумма противоположных слагаемых равна нулю
Приводя подобные слагаемые, мы обычно складываем их. Но в качестве знака операции можно использовать знак одночлена. Так, приводя подобные слагаемые y и −y мы сложили их по правилу приведения подобных слагаемых. Но можно не складывая, записать их друг за другом
Получится тот же результат, поскольку выражения y + (−y) и y − y одинаково равны нулю:
Возвращаемся к нашему примеру. Вычеркнем члены y и −y :
Или без сложения, записав члены друг за другом:
Решим этот же пример в столбик:
Пример 2. Вычесть из многочлена 13x − 11y + 10z многочлен −15x + 10y − 15z
Решим этот пример с помощью скобок, а затем в столбик:
Следует быть внимательным при вычитании в столбик. Если не следить за знаками, вероятность допустить ошибку очень высокá. Нужно учитывать не только знак операции вычитания, но и знак располагающийся перед слагаемым.
Так, в данном примере из слагаемого 10z вычиталось слагаемое −15z
Складывая или вычитая многочлены при помощи скобок, первый многочлен в скобки можно не заключать. Так, в данном примере из многочлена 13x − 11y + 10z требовалось вычесть многочлен −15x + 10y − 15z
Вычитание было записано так:
Но первый многочлен можно не заключать в скобки:
Заключение первого многочлена в скобки на первых порах позволяет начинающим наглядно увидеть, что второй многочлен полностью вычитается из первого, а не из определенной его части.
Представление многочлена в виде суммы или разности
Многочлен можно представить в виде суммы или разности многочленов. По сути это обратное действие раскрытию скобок, поскольку идея подразумевает, что имеется некий многочлен, и из него можно образовать сумму или разность многочленов, заключив в скобки некоторые из членов исходного многочлена.
В скобки также можно было бы заключить члены 3x, 5y, z и прибавить это выражение в скобках к члену 7
Представляя многочлен в виде разности многочленов, нужно придерживаться следующего правила. Если члены заключаются в скобки после знака минуса, то этим членам внутри скобок нужно поменять знаки на противоположные.
Но мы видим, что после знака минуса следует заключение членов z и 7 в скобки. Поэтому этим членам нужно поменять знаки на противоположные. Делать это нужно внутри скобок:
Вообще, представляя многочлен в виде суммы или разности, можно придерживаться следующих правил:
Если перед скобками ставится знак «плюс», то все члены внутри скобок записываются со своими же знаками.
Если перед скобками ставится знак «минус», то все члены внутри скобок записываются с противоположными знаками.
Пример 1. Представить многочлен 3x 4 + 2x 3 + 5x 2 − 4 в виде суммы каких-нибудь двучленов:
Пример 2. Представить многочлен 3x 4 + 2x 3 + 5x 2 − 4 в виде разности каких-нибудь двучленов:
Перед вторыми скобками располагался минус, поэтому члены 5x 2 и −4 были записаны с противоположными знаками.
Многочлен и его стандартный вид
Многочлен, как и одночлен, можно привести к стандартному виду. В результате получается упрощенный многочлен, с которым удобно работать.
Чтобы привести многочлен к стандартному виду, нужно привести подобные слагаемые в этом многочлене. Подобные слагаемые в многочлене называют подобными членами многочлена, а приведение подобных слагаемых в многочлене — приведением его подобных членов.
Подобные члены многочлена это члены, имеющие одинаковую буквенную часть.
Как и у одночлена, у многочлена имеется степень. Чтобы определить степень многочлена, сначала его нужно привести к стандартному виду, затем выбрать тот одночлен, степень которого является наибольшей из всех.
Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в него одночленов.
В некоторых многочленах прежде всего требуется привести к стандартному виду одночлены, входящие в него, и только потом приводить сам многочлен к стандартному виду.
Например, приведем многочлен 3xx 4 + 3xx 3 − 5x 2 x 3 − 5x 2 x к стандартному виду. Этот многочлен состоит из одночленов, которые не приведены к стандартному виду. Сначала приведём их к стандартному виду:
Пример 2. Привести многочлен 3ab + 4cc + ab + 3c 2 к стандартному виду.
Далее приведём подобные члены:
Пример 3. Привести многочлен 4x 2 − 4y − x 2 + 17y − y к стандартному виду.
Приводя подобные члены, можно использовать скобки. Для этого подобные члены следует заключить в скобки, затем объединить выражения в скобках с помощью знака «плюс».
Теперь в скобках выполним приведение подобных членов:
В получившемся выражении (3x 2 ) + (12y) раскроем скобки:
Конечно, такой подход нагромождает выражение, но зато позволяет свести к минимуму допущение ошибок.
Пример 4. Привести многочлен 12x 2 − 9y − 9x 2 + 6y + y к стандартному виду.
Заключим в скобки подобные слагаемые и объединим их с помощью знака «плюс»
Далее вычисляем содержимое скобок:
Избавляемся от скобок при помощи раскрытия:
Изменение порядка следования членов
Многочлен это сумма одночленов. То есть исходный двучлен двучлен x − y является суммой x и −y
От перестановки мест слагаемых сумма не меняется. Тогда x и −y можно поменять местами
Пример 2. В двучлене −y − x поменять местами члены.
Двучлен −y − x это сумма членов −y и −x
Таким образом, решение можно записать покороче:
Пример 3. Упорядочить члены многочлена x + xy 3 − x 2 в порядке убывания степеней.
Умножение одночлена на многочлен
Одночлен можно умножить на многочлен. Чтобы умножить одночлен на многочлен, нужно этот одночлен умножить на каждый член многочлена и полученные произведения сложить.
Вычислим получившиеся произведения:
Умножение желательно выполнять в уме. Так решение получается короче:
В некоторых примерах одночлен располагается после многочлена. В этом случае опять же каждый член многочлена нужно перемножить с одночленом и полученные произведения сложить.
Например, предыдущий пример мог быть дан в следующем виде:
В этом случае мы умножили бы каждый член многочлен (2x + y + 5) на одночлен 3x 2 и сложили бы полученные результаты:
Умножение одночлена на многочлен (или умножение многочлена на одночлен) основано на распределительном законе умножения.
Вообще, умножение одночлена на многочлен, да и распределительный закон умножения имеют геометрический смысл.
Допустим, имеется прямоугольник со сторонами a и b
Увеличим сторону b на c
Достроим отсутствующую сторону и закрасим для наглядности получившийся прямоугольник:
Теперь вычислим площадь получившегося большого прямоугольника. Он включает в себя желтый и серый прямоугольники.
или ширину умножить на длину, чтобы расположить буквы a, b и c в алфавитном порядке:
Таким образом, выражения a × (b + c) и ab + ac равны одному и тому же значению (одной и той же площади)
К примеру, пусть у нас имеется прямоугольник длиной 4 см, и шириной 2 см, и мы увеличили длину на 2 см
2 × (4 + 2) = 2 × 4 + 2 × 2 = 12.
Действительно, в получившемся большом прямоугольнике содержится двенадцать квадратных сантиметров:
Пример 2. Умножить одночлен 2a на многочлен a 2 − 7a − 3
Умножим одночлен 2a на каждый член многочлена a 2 − 7a − 3 и сложим полученные произведения:
Пример 3. Умножить одночлен −a 2 b 2 на многочлен a 2 b 2 − a 2 − b 2
Умножим одночлен −a 2 b 2 на каждый член многочлена a 2 b 2 − a 2 − b 2 и сложим полученные произведения:
Пример 4. Выполнить умножение −1,4x 2 y 6 (5x 3 y − 1,5xy 2 − 2y 3 )
Умножим одночлен −1,4x 2 y 6 на каждый член многочлена 5x 3 y − 1,5xy 2 − 2y 3 и сложим полученные произведения:
Пример 5. Выполнить умножение
Умножим одночлен на каждый член многочлена
и сложим полученные произведения:
Выполняя короткие решения, результаты записывают сразу друг за другом вместе со знаком полученного члена. Рассмотрим поэтапно, как было выполнено короткое решение данного примера.
Сначала одночлен нужно умножить на первый член многочлена
, то есть на
. Умножение выполняется в уме. Получается результат
. В исходном выражении ставим знак равенства и записываем первый результат:
После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.
Следующим шагом будет умножение одночлена на второй член многочлена
, то есть на
. Получается результат
. Этот результат является положительным, то есть со знаком плюс
. В исходном выражении этот результат записывается вместе с этим плюсом сразу после члена
После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.
Следующим шагом будет умножение одночлена на третий член многочлена
, то есть на
. Получается результат
. Этот результат является отрицательным, то есть со знаком минус. В исходном выражении этот результат записывается вместе со своим минусом сразу после члена
Иногда встречаются выражения, в которых сначала нужно выполнить умножение одночлена на многочлен, затем опять на одночлен. Например:
Умножение также можно было бы выполнить сначала умножив (a + b) на с и полученный результат перемножить с членом 2
В данном случае срабатывает сочетательный закон умножения, который говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий:
a × b × с = (a × b) × с = a × (b × с)
То есть умножение можно выполнять в любом порядке. Это не приведёт к изменению значения изначального выражения.
Умножение многочлена на многочлен
Чтобы умножить многочлен на многочлен, нужно каждый член первого многочлена умножить на каждый член второго многочлена и полученные произведения сложить.
Например, умножим многочлен x + 3 на y + 4
Заключим в скобки каждый многочлен и объединим их знаком умножения ×
Получаем умножение многочлена (x + 3) на одночлен 4. Выполним это умножение. Умножение необходимо продолжать в исходном примере (x + 3)(y + 4) = xy + 3y
Таким образом, при умножении многочлена (x + 3) на многочлен (y + 4) получается многочлен xy + 3y + 4x + 12.
По другому умножение многочлена на многочлен можно выполнить ещё так: каждый член первого многочлена умножить на второй многочлен целиком и полученные произведения сложить.
Решим предыдущий пример, воспользовавшись этим способом. Умножим каждый член многочлена x + 3 на весь многочлен y + 4 целиком и сложим полученные произведения:
В результате приходим к умножению одночлена на многочлен, которое мы изучили ранее. Выполним это умножение:
Получится тот же результат что и раньше, но члены полученного многочлена будут располагаться немного по другому.
Умножение многочлена на многочлен имеет геометрический смысл. Допустим, имеется прямоугольник, длина которого a и ширина b
Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:
То есть выражения (a + x)(b + y) и ab + xb + ay + xy тождественно равны
Представим, что у нас имелся прямоугольник, длиной 6 см и шириной 3 см, и мы увеличили его длину на 2 см, а ширину на 1 см
Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:
6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 32
(6 + 2)(3 + 1) = 6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 18 + 6 + 6 + 2 = 32
Действительно, в получившемся большом прямоугольнике содержится тридцать два квадратных сантиметра:
Пример 2. Умножить многочлен a + b на c + d
Заключим исходные многочлены в скобки и запишем их друг за другом:
Теперь умножим каждый член первого многочлена (a + b) на каждый член второго многочлена (c + d)
Пример 4. Выполнить умножение (−x − 2y)(x + 2y 2 )
Умножим каждый член многочлена (−x − 2y) на каждый член многочлена (x + 2y 2 )
Результат перемножения членов нужно записывать вместе со знаками этих членов. Рассмотрим поэтапно, как был решён данный пример.
Пример 5. Выполнить умножение (4a 2 + 2ab − b 2 )(2a − b)
Умножим каждый член многочлена (4a 2 + 2ab − b 2 ) на каждый член многочлена (2a − b)
В получившемся выражении можно привести подобные слагаемые:
Пример 6. Выполнить умножение −(a + b)(с − d)
Согласно сочетательному закону умножения, если выражение состоит из нескольких сомножителей, то его можно вычислять в любом порядке.
Либо можно было перемножить −1 с первым многочленом (a + b) и результат перемножить с многочленом (с − d)
Пример 7. Выполнить умножение x 2 (x + 5)(x − 3)
Пример 8. Выполнить умножение (a + 1)(a + 2)(a + 3)
Итак, перемножим (a + 1) и (a + 2)
Полученный многочлен (a 2 + a + 2a + 2) перемножим с (a + 3)
Если быстрое перемножение многочленов на первых порах даётся тяжело, можно воспользоваться подробным решением, суть которого заключается в том, чтобы записать, как каждый член первого многочлена умножается на весь второй многочлен целиком. Такая запись хоть и занимает место, но позволяет свести к минимуму допущение ошибок.
Например, выполним умножение (a + b)(c + d)
Запишем как каждый член многочлена a + b умножается на весь многочлен c + d целиком. В результате придём к умножению одночлена на многочлен, выполнять которое проще:
Такая запись удобна при умножении двучлена на какой-нибудь многочлен, в котором содержится больше двух членов. Например:
Или при перемножении многочленов, содержащих больше двух членов. Например, умножим многочлен x 2 + 2x − 5 на многочлен x 3 − x + 2
Получили привычное для нас умножения одночленов на многочлены. Выполним эти умножения:
В получившемся многочлене приведём подобные члены:
Одночлены, входящие в получившийся многочлен, расположим в порядке убывания степеней. Делать это необязательно. Но такая запись будет красивее:
Вынесение общего множителя за скобки
Мы уже учились выносить общий множитель за скобки в простых буквенных выражениях. Теперь мы немного углубимся в эту тему, и научимся выносить общий множитель за скобки в многочлене. Принцип вынесения будет таким же, как и в простом буквенном выражении. Небольшие трудности могут возникнуть лишь с многочленами, состоящими из степеней.
Пример 2. Вынести общий множитель за скобки в многочлене x 2 + x + xy
Все члены данного многочлены имеют коэффициент единицу. Наибольший общий делитель модулей из этих единиц есть единица. Поэтому числовая часть выносимого за скобки множителя будет единицей. Но единицу в качестве коэффициента не записывают.
Каждый член многочлена представлен в виде произведения множителей, из которых состоят эти члены. Легко заметить, что во всех трёх произведениях общим сомножителем является x. Выделим его:
Этот множитель x и вынесем за скобки. Опять же при вынесении общего множителя за скобки каждое слагаемое исходного выражения делим на этот общий множитель. В нашем случае каждый член многочлена x × x + 1 × x + x × y нужно разделить на общий множитель x
В результате в скобках остаются члены, которые не имеют общих буквенных сомножителей, а модули коэффициентов этих членов не имеют общих делителей, кроме 1.
Пример 2. Вынести общий множитель за скобки в многочлене 15x 2 y 3 + 12xy 2 + 3xy 2
Определим коэффициент общего множителя, выносимого за скобки. Наибольший общий делитель модулей коэффициентов 15, 12 и 3 это число 3. Значит, число 3 будет коэффициентом общего множителя, выносимого за скобки.
Теперь определим буквенную часть общего множителя, выносимого за скобки. Её нужно выбирать так, чтобы в скобках остались члены, которые не содержат общего буквенного множителя.
Перепишем буквенные части исходного многочлена 15x 2 y 3 + 12xy 2 + 3xy 2 в виде разложения на множители. Это позволит хорошо увидеть, что именно можно вынести за скобки:
В итоге общим множителем, выносимым за скобки, будет множитель 3xy 2
Пример 3. Вынести общий множитель за скобки в выражении x 2 + x
В данном случае за скобки можно вынести x
Не следует на письме подробно расписывать содержимое каждого члена, разлагая его на множители. Это легко делается в уме.
Пример 4. Вынести общий множитель за скобки в многочлене 5y 2 − 15y
Пример 5. Вынести общий множитель за скобки в многочлене 5y 2 − 15y 3
Пример 6. Вынести общий множитель за скобки в многочлене 20x 4 − 25x 2 y 2 − 10x 3
Пример 7. Вынести общий множитель за скобки в многочлене a m + a m + 1
Проверка на тождественность
Решение задачи с многочленами порой растягивается на несколько строк. Каждое следующее преобразование должно быть тождественно равно предыдущему. Если возникают сомнения в правильности своих действий, то можно подставить произвольные значения переменных в исходное и полученное выражение. Если исходное и полученное выражение будут равны одному и тому же значению, то можно быть уверенным, что задача была решена правильно.
Допустим, нам нужно вынести общий множитель за скобки в следующем многочлене:
В данном случае за скобки можно вынести общий множитель 2x
2x + 4x 2 = 2 × 2 + 4 × 2 2 = 4 + 16 = 20
Теперь подставим значение 2 в преобразованное выражение 2x(1 + 2x)
2x(1 + 2x) = 2 × 2 × (1 + 2 × 2 ) = 4 × 5 = 20
2x + 4x 2 = 2 × 1 + 4 × 1 2 = 2 + 4 = 6
2x(1 + 2x) = 2 × 1 × (1 + 2 × 1 ) = 2 × 3 = 6
Пример 2. Вычесть из многочлена 5x 2 − 3x + 4 многочлен 4x 2 − x и проверить полученный результат, подставив вместо переменной x произвольное значение.
Видим, что при каждом преобразовании значение выражения при x = 2 не менялось. Это значит, что задача была решена правильно.