что такое спектр сигнала

Спектр сигнала

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

Спектр сигнала — в радиотехнике это результат разложения сигнала на более простые в базисе ортогональных функций. В качестве разложения обычно используются преобразование Фурье, разложение по функциям Уолша, вейвлет-преобразование и др.

Содержание

Базисные функции

В радиотехнике в качестве базисных функций используют синусоидальные функции. Это объясняется рядом причин:

Кроме гармонического ряда Фурье применяются и другие виды разложений: по функциям Уолша, Бесселя, Хаара, Лежандра, полиномам Чебышева и др.

В цифровой обработке сигналов для анализа применяются дискретные преобразования: Фурье, Хартли, вейвлетные и др.

Применение

Разложение сигнала в спектр применяется в анализе прохождения сигналов через электрические цепи (спектральный метод). Спектр периодического сигнала является дискретным и представляет набор гармонических колебаний, в сумме составляющий исходный сигнал. Одним из преимуществ разложения сигнала в спектр является следующее: сигнал, проходя по цепи, претерпевает изменения (усиление, задержка, модулирование, детектирование, изменение фазы, ограничение и т. д.). Токи и напряжения в цепи под действием сигнала описываются дифференциальными уравнениями, соответствующими элементам цепи и способу их соединения. Линейные цепи описываются линейными дифференциальными уравнениями, причём для линейных цепей верен принцип суперпозиции: действие на систему сложного сигнала, который состоит из суммы простых сигналов, равно сумме действий от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на какой-либо простой сигнал, например, на синусоидальное колебание с определённой частотой, определить реакцию системы на любой сложный сигнал, разложив его в ряд по синусоидальным колебаниям.

На практике спектр измеряют при помощи специальных приборов: анализаторов спектра.

Математическое представление

Если под сигналом что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигналапонимать электрическое напряжение на резисторе сопротивлением 1 Ом, то спектр этого сигнала что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигналаможно записать следующим образом:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала, где что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала— угловая частота равная что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала.

Спектр сигнала является комплексной величиной и представляется в виде: что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала, где что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала— амплитудно-частотная характеристика сигнала, что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала— фазо-частотная характеристика сигнала.

Энергия сигнала, выделяемая на резисторе, будет равна что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала, средняя мощность — что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала.

Источник

Практическое применение преобразования Фурье для анализа сигналов. Введение для начинающих

1. Преобразование Фурье и спектр сигнала

Во многих случаях задача получения (вычисления) спектра сигнала выглядит следующим образом. Имеется АЦП, который с частотой дискретизации Fd преобразует непрерывный сигнал, поступающий на его вход в течение времени Т, в цифровые отсчеты — N штук. Далее массив отсчетов подается в некую программку, которая выдает N/2 каких-то числовых значений (программист, который утянул из инета написал программку, уверяет, что она делает преобразование Фурье).

Чтобы проверить, правильно ли работает программа, сформируем массив отсчетов как сумму двух синусоид sin(10*2*pi*x)+0,5*sin(5*2*pi*x) и подсунем программке. Программа нарисовала следующее:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.1 График временной функции сигнала

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.2 График спектра сигнала

На графике спектра имеется две палки (гармоники) 5 Гц с амплитудой 0.5 В и 10 Гц — с амплитудой 1 В, все как в формуле исходного сигнала. Все отлично, программист молодец! Программа работает правильно.

Это значит, что если мы подадим на вход АЦП реальный сигнал из смеси двух синусоид, то мы получим аналогичный спектр, состоящий из двух гармоник.

Итого, наш реальный измеренный сигнал, длительностью 5 сек, оцифрованный АЦП, то есть представленный дискретными отсчетами, имеет дискретный непериодический спектр.

С математической точки зрения — сколько ошибок в этой фразе?

Теперь начальство решило мы решили, что 5 секунд — это слишком долго, давай измерять сигнал за 0.5 сек.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.3 График функции sin(10*2*pi*x)+0,5*sin(5*2*pi*x) на периоде измерения 0.5 сек

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.4 Спектр функции

Что-то как бы не то! Гармоника 10 Гц рисуется нормально, а вместо палки на 5 Гц появилось несколько каких-то непонятных гармоник. Смотрим в интернетах, что да как…

Во, говорят, что в конец выборки надо добавить нули и спектр будет рисоваться нормальный.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.5 Добили нулей до 5 сек

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.6 Получили спектр

Все равно не то, что было на 5 секундах. Придется разбираться с теорией. Идем в Википедию — источник знаний.

2. Непрерывная функция и представление её рядом Фурье

Математически наш сигнал длительностью T секунд является некоторой функцией f(x), заданной на отрезке <0, T>(X в данном случае — время). Такую функцию всегда можно представить в виде суммы гармонических функций (синусоид или косинусоид) вида:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала(1), где:

k — номер тригонометрической функции ( номер гармонической составляющей, номер гармоники)
T — отрезок, где функция определена (длительность сигнала)
Ak — амплитуда k-ой гармонической составляющей,
θk- начальная фаза k-ой гармонической составляющей

Что значит «представить функцию в виде суммы ряда»? Это значит, что, сложив в каждой точке значения гармонических составляющих ряда Фурье, мы получим значение нашей функции в этой точке.

(Более строго, среднеквадратичное отклонение ряда от функции f(x) будет стремиться к нулю, но несмотря на среднеквадратичную сходимость, ряд Фурье функции, вообще говоря, не обязан сходиться к ней поточечно. См. https://ru.wikipedia.org/wiki/Ряд_Фурье.)

Этот ряд может быть также записан в виде:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала(2),
где что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала, k-я комплексная амплитуда.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала(3)

Связь между коэффициентами (1) и (3) выражается следующими формулами:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

Отметим, что все эти три представления ряда Фурье совершенно равнозначны. Иногда при работе с рядами Фурье бывает удобнее использовать вместо синусов и косинусов экспоненты мнимого аргумента, то есть использовать преобразование Фурье в комплексной форме. Но нам удобно использовать формулу (1), где ряд Фурье представлен в виде суммы косинусоид с соответствующими амплитудами и фазами. В любом случае неправильно говорить, что результатом преобразования Фурье действительного сигнала будут комплексные амплитуды гармоник. Как правильно говорится в Вики «Преобразование Фурье (ℱ) — операция, сопоставляющая одной функции вещественной переменной другую функцию, также вещественной переменной.»

Итого:
Математической основой спектрального анализа сигналов является преобразование Фурье.

Преобразование Фурье позволяет представить непрерывную функцию f(x) (сигнал), определенную на отрезке <0, T>в виде суммы бесконечного числа (бесконечного ряда) тригонометрических функций (синусоид и\или косинусоид) с определёнными амплитудами и фазами, также рассматриваемых на отрезке <0, T>. Такой ряд называется рядом Фурье.

Отметим еще некоторые моменты, понимание которых требуется для правильного применения преобразования Фурье к анализу сигналов. Если рассмотреть ряд Фурье (сумму синусоид) на всей оси Х, то можно увидеть, что вне отрезка <0, T>функция представленная рядом Фурье будет будет периодически повторять нашу функцию.

Например, на графике рис.7 исходная функция определена на отрезке <-T\2, +T\2>, а ряд Фурье представляет периодическую функцию, определенную на всей оси х.

Это происходит потому, что синусоиды сами являются периодическими функциями, соответственно и их сумма будет периодической функцией.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.7 Представление непериодической исходной функции рядом Фурье

Наша исходная функция — непрерывная, непериодическая, определена на некотором отрезке длиной T.
Спектр этой функции — дискретный, то есть представлен в виде бесконечного ряда гармонических составляющих — ряда Фурье.
По факту, рядом Фурье определяется некоторая периодическая функция, совпадающая с нашей на отрезке <0, T>, но для нас эта периодичность не существенна.

Периоды гармонических составляющих кратны величине отрезка <0, T>, на котором определена исходная функция f(x). Другими словами, периоды гармоник кратны длительности измерения сигнала. Например, период первой гармоники ряда Фурье равен интервалу Т, на котором определена функция f(x). Период второй гармоники ряда Фурье равен интервалу Т/2. И так далее (см. рис. 8).

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.8 Периоды (частоты) гармонических составляющих ряда Фурье (здесь Т=2π)

Соответственно, частоты гармонических составляющих кратны величине 1/Т. То есть частоты гармонических составляющих Fk равны Fk= к\Т, где к пробегает значения от 0 до ∞, например к=0 F0=0; к=1 F1=1\T; к=2 F2=2\T; к=3 F3=3\T;… Fk= к\Т (при нулевой частоте — постоянная составляющая).

Пусть наша исходная функция, представляет собой сигнал, записанный в течение Т=1 сек. Тогда период первой гармоники будет равен длительности нашего сигнала Т1=Т=1 сек и частота гармоники равна 1 Гц. Период второй гармоники будет равен длительности сигнала, деленной на 2 (Т2=Т/2=0,5 сек) и частота равна 2 Гц. Для третьей гармоники Т3=Т/3 сек и частота равна 3 Гц. И так далее.

Шаг между гармониками в этом случае равен 1 Гц.

Таким образом сигнал длительностью 1 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 1 Гц.
Чтобы увеличить разрешение в 2 раза до 0,5 Гц — надо увеличить длительность измерения в 2 раза — до 2 сек. Сигнал длительностью 10 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 0,1 Гц. Других способов увеличить разрешение по частоте нет.

Существует способ искусственного увеличения длительности сигнала путем добавления нулей к массиву отсчетов. Но реальную разрешающую способность по частоте он не увеличивает.

3. Дискретные сигналы и дискретное преобразование Фурье

С развитием цифровой техники изменились и способы хранения данных измерений (сигналов). Если раньше сигнал мог записываться на магнитофон и храниться на ленте в аналоговом виде, то сейчас сигналы оцифровываются и хранятся в файлах в памяти компьютера в виде набора чисел (отсчетов).

Обычная схема измерения и оцифровки сигнала выглядит следующим образом.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.9 Схема измерительного канала

Сигнал с измерительного преобразователя поступает на АЦП в течение периода времени Т. Полученные за время Т отсчеты сигнала (выборка) передаются в компьютер и сохраняются в памяти.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.10 Оцифрованный сигнал — N отсчетов полученных за время Т

Какие требования выдвигаются к параметрам оцифровки сигнала? Устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал) называется аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) ( Wiki).

Одним из основных параметров АЦП является максимальная частота дискретизации (или частота семплирования, англ. sample rate) — частота взятия отсчетов непрерывного во времени сигнала при его дискретизации. Измеряется в герцах. (( Wiki))

Согласно теореме Котельникова, если непрерывный сигнал имеет спектр, ограниченный частотой Fмакс, то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым через интервалы времени что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала, т.е. с частотой Fd ≥ 2*Fмакс, где Fd — частота дискретизации; Fмакс — максимальная частота спектра сигнала. Другими слова частота оцифровки сигнала (частота дискретизации АЦП) должна как минимум в 2 раза превышать максимальную частоту сигнала, который мы хотим измерить.

А что будет, если мы будем брать отсчеты с меньшей частотой, чем требуется по теореме Котельникова?

В этом случае возникает эффект «алиасинга» (он же стробоскопический эффект, муаровый эффект), при котором сигнал высокой частоты после оцифровки превращается в сигнал низкой частоты, которого на самом деле не существует. На рис. 11 красная синусоида высокой частоты — это реальный сигнал. Синяя синусоида более низкой частоты — фиктивный сигнал, возникающий вследствие того, за время взятия отсчета успевает пройти больше, чем пол-периода высокочастотного сигнала.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
Рис. 11. Появление ложного сигнала низкой частоты при недостаточно высокой частоте дискретизации

Чтобы избежать эффекта алиасинга перед АЦП ставят специальный антиалиасинговый фильтр — ФНЧ (фильтр нижних частот), который пропускает частоты ниже половины частоты дискретизации АЦП, а более высокие частоты зарезает.

Для того, чтобы вычислить спектр сигнала по его дискретным отсчетам используется дискретное преобразование Фурье (ДПФ). Отметим еще раз, что спектр дискретного сигнала «по определению» ограничен частотой Fмакс, меньшей половине частоты дискретизации Fd. Поэтому спектр дискретного сигнала может быть представлен суммой конечного числа гармоник, в отличие от бесконечной суммы для ряда Фурье непрерывного сигнала, спектр которого может быть неограничен. Согласно теореме Котельникова максимальная частота гармоники должна быть такой, чтобы на нее приходилось как минимум два отсчета, поэтому число гармоник равно половине числа отсчетов дискретного сигнала. То есть если в выборке имеется N отсчетов, то число гармоник в спектре будет равно N/2.

Рассмотрим теперь дискретное преобразование Фурье (ДПФ).

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

Сравнивая с рядом Фурье

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

видим, что они совпадают, за исключением того, что время в ДПФ имеет дискретный характер и число гармоник ограничено величиной N/2 — половиной числа отсчетов.

Формулы ДПФ записываются в безразмерных целых переменных k, s, где k – номера отсчетов сигнала, s – номера спектральных составляющих.
Величина s показывает количество полных колебаний гармоники на периоде Т (длительности измерения сигнала). Дискретное преобразование Фурье используется для нахождения амплитуд и фаз гармоник численным методом, т.е. «на компьютере»

Возвращаясь к результатам, полученным в начале. Как уже было сказано выше, при разложении в ряд Фурье непериодической функции (нашего сигнала), полученный ряд Фурье фактически соответствует периодической функции с периодом Т. (рис.12).

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
рис.12 Периодическая функция f(x) с периодом Т0, с периодом измерения Т>T0

Как видно на рис.12 функция f(x) периодическая с периодом Т0. Однако из-за того, что длительность измерительной выборки Т не совпадает с периодом функции Т0, функция, получаемая как ряд Фурье, имеет разрыв в точке Т. В результате спектр данной функции будет содержать большое количество высокочастотных гармоник. Если бы длительность измерительной выборки Т совпадала с периодом функции Т0, то в полученном после преобразования Фурье спектре присутствовала бы только первая гармоника (синусоида с периодом равным длительности выборки), поскольку функция f(x) представляет собой синусоиду.

Другими словами, программа ДПФ «не знает», что наш сигнал представляет собой «кусок синусоиды», а пытается представить в виде ряда периодическую функцию, которая имеет разрыв из-за нестыковки отдельных кусков синусоиды.

В результате в спектре появляются гармоники, которые должны в сумме изобразить форму функции, включая этот разрыв.

Таким образом, чтобы получить «правильный» спектр сигнала, являющегося суммой нескольких синусоид с разными периодами, необходимо чтобы на периоде измерения сигнала укладывалось целое число периодов каждой синусоиды. На практике это условие можно выполнить при достаточно большой длительности измерения сигнала.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
Рис.13 Пример функции и спектра сигнала кинематической погрешности редуктора

При меньшей длительности картина будет выглядеть «хуже»:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала
Рис.14 Пример функции и спектра сигнала вибрации ротора

На практике бывает сложно понять, где «реальные составляющие», а где «артефакты», вызванные некратностью периодов составляющих и длительности выборки сигнала или «скачками и разрывами» формы сигнала. Конечно слова «реальные составляющие» и «артефакты» не зря взяты в кавычки. Наличие на графике спектра множества гармоник не означает, что наш сигнал в реальности из них «состоит». Это все равно что считать, будто число 7 «состоит» из чисел 3 и 4. Число 7 можно представить в виде суммы чисел 3 и 4 — это правильно.

Так и наш сигнал… а вернее даже не «наш сигнал», а периодическую функцию, составленную путем повторения нашего сигнала (выборки) можно представить в виде суммы гармоник (синусоид) с определенными амплитудами и фазами. Но во многих важных для практики случаях (см. рисунки выше) действительно можно связать полученные в спектре гармоники и с реальными процессами, имеющими циклический характер и вносящими значительный вклад в форму сигнала.

Некоторые итоги

1. Реальный измеренный сигнал, длительностью T сек, оцифрованный АЦП, то есть представленный набором дискретных отсчетов (N штук), имеет дискретный непериодический спектр, представленный набором гармоник (N/2 штук).

2. Сигнал представлен набором действительных значений и его спектр представлен набором действительных значений. Частоты гармоник положительны. То, что математикам бывает удобнее представить спектр в комплексной форме с использованием отрицательных частот не значит, что «так правильно» и «так всегда надо делать».

3. Сигнал, измеренный на отрезке времени Т определен только на отрезке времени Т. Что было до того, как мы начали измерять сигнал, и что будет после того — науке это неизвестно. И в нашем случае — неинтересно. ДПФ ограниченного во времени сигнала дает его «настоящий» спектр, в том смысле, что при определенных условиях позволяет вычислить амплитуду и частоту его составляющих.

Использованные материалы и другие полезные материалы.

Источник

Амплитудно-частотная характеристика (АЧХ). Спектр сигнала.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

При обсуждении переменного тока в одной из предыдущих статей (ссылка) мы познакомились с понятием гармонической (синусоидальной) функции. А бывают ли негармонические функции и сигналы и как с ними работать? В этом нам и предстоит сегодня разобраться 🙂 Кроме того, мы рассмотрим важнейшее понятие — амплитудно-частотную характеристику (АЧХ) сигналов.

Гармонические и негармонические сигналы.

Здесь A — амплитуда сигнала, w — циклическая частота, а \phi — начальная фаза. Вы спросите — а как же синус? Разве синусоидальный сигнал не является гармоническим? Конечно, является, дело в том, что sin\alpha = cos(\frac<\pi><2>\medspace-\medspace \alpha) — то есть сигналы отличаются начальной фазой, соответственно, синусоидальный сигнал не противоречит определению, которое мы дали для гармонических колебаний 🙂

Вторым подклассом периодических сигналов являются негармонические колебания. Вот пример негармонического сигнала:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

Как видите, несмотря на «нестандартную» форму, сигнал остается периодическим, то есть его форма повторяется через интервал времени, равный периоду.

Для работы с такими сигналами и их исследования существует определенная методика, которая заключается в разложении сигнала в ряд Фурье. Суть методики состоит в том, что негармонический периодический сигнал (при выполнении определенных условий) можно представить в виде суммы гармонических колебаний с определенными амплитудами, частотами и начальными фазами. Важным нюансом является то, что все гармонические колебания, которые участвуют в суммировании, должны иметь частоты, кратные частоте исходного негармонического сигнала. Возможно это пока не совсем понятно, так что давайте рассмотрим практический пример и разберемся чуть подробнее 🙂 Для примера используем сигнал, который изображен на рисунке чуть выше. Его можно представить следующим образом:

Давайте изобразим все эти сигналы на одном графике:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

В этой формуле U_k — амплитуда, а \phi_k — начальная фаза k-ой гармоники. Как мы уже упомянули чуть ранее, частоты всех гармоник кратны частоте первой гармоники, собственно, это мы и видим в этой формуле 🙂 U_0 — это нулевая гармоника, ее частота равна 0, она равна среднему значению функции за период. Почему среднему? Смотрите — среднее значения функции синуса за период равно 0, а значит при усреднении в этой формуле все слагаемые, кроме U_0 будут равны 0.

Амплитудный спектр сигнала.

Совокупность всех гармонических составляющих негармонического сигнала называют спектром этого сигнала. Различают фазовый и амплитудный спектр сигнала:

Давайте рассмотрим амплитудный спектр поподробнее. Для визуального изображения спектра используют диаграммы, представляющие из себя набор вертикальных линий определенной длины (длина зависит от амплитуды сигналов). На горизонтальной оси диаграммы откладываются частоты гармоник:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

По горизонтальной оси могут откладываться как частоты в Гц, так и просто номера гармоник, как в данном случае. А по вертикальной оси — амплитуды гармоник, тут все понятно. Давайте построим амплитудный спектр сигнала для негармонического колебания, которое мы рассматривали в качестве примера в самом начале статьи. Напоминаю, что его разложение в ряд Фурье выглядит следующим образом:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

У нас есть две гармоники, амплитуды которых равны, соответственно, 2 и 1.5. Поэтому на диаграмме две линии, длины которых соответствуют амплитудам гармонических колебаний. Фазовый спектр сигнала строится аналогично, за той лишь разницей, что используются начальные фазы гармоник, а не амплитуды.

Итак, с построением и анализом амплитудного спектра сигнала мы разобрались! Давайте перейдем к следующей теме сегодняшней статьи — к понятию амплитудно-частотной характеристики.

Амплитудно-частотная характеристика (АЧХ).

АЧХ является важнейшей характеристикой многих цепей и устройств — фильтров, усилителей звука и т. д. Даже простые наушники имеют свою собственную амплитудно-частотную характеристику. Что же она показывает?

АЧХ — это зависимость амплитуды выходного сигнала от частоты входного сигнала. Как мы выяснили в первой части статьи, негармонический периодический сигнал можно разложить в ряд Фурье. Но нас сейчас интересует, в первую очередь, аудио-сигнал, и выглядит он следующим образом:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

Как видите, ни о какой периодичности здесь не идет и речи! Но, к счастью, существуют специальные алгоритмы, которые позволяют представить звуковой сигнал в виде спектра входящих в него частот. Мы сейчас не будем подробно разбирать эти алгоритмы, это тема для отдельной статьи 🙂 Просто примем тот факт, что они позволяют нам осуществить такое преобразование с аудио-сигналом.

Соответственно, мы можем построить диаграмму амплитудного спектра звукового сигнала. А пройдя через какую-либо цепь (к примеру, через наушники при воспроизведении звука) сигнал будет изменен. Так вот амплитудно-частотная характеристика как раз и показывает, какие изменения будет претерпевать входной сигнал при прохождении через ту или иную цепь. Давайте обсудим этот момент чуть поподробнее…

Итак, на входе мы имеем ряд гармоник. Амплитудная-частотная характеристика показывает, как изменится амплитуда той или иной гармоники при прохождении через цепь. Рассмотрим пример АЧХ:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

Разберемся поэтапно, что же тут изображено… Начнем с осей графика АЧХ. По оси y мы откладываем величину выходного напряжения (или коэффициента усиления, как на данном рисунке). Коэффициент усиления мы откладываем в дБ, соответственно величина, равная 0 дБ, соответствует усилению в 1 раз, то есть амплитуда сигнала остается неизменной.

По оси x откладываются частоты входного сигнала. Таким образом, в рассматриваемом случае для всех гармоник, частоты которых лежат в интервале от 100 до 10000 Гц, амплитуда не изменится. А сигналы всех остальных гармоник будут ослаблены.

Практические примеры АЧХ аудио-устройств.

Частотный диапазон аудио-устройств обычно разбивают на низкие, средние и высокие частоты. Приблизительно это выглядит так:

Именно такую терминологию обычно можно встретить в разных программах-эквалайзерах, используемых для настройки звука. Теперь вы знаете, что красивые графики из таких программ являются именно амплитудно-частотными характеристиками, с которыми мы познакомились в сегодняшней статье 🙂

В завершении статьи посмотрим на пару АЧХ, полученных в программном эквалайзере:

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

Здесь мы можем видеть амплитудно-частотную характеристику усилителя. Причем усилены будут преимущественно средние частоты диапазона.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

А здесь ситуация совсем другая — низкие и верхние частоты усиливаются, а в области средних частот для гармоник с частотой 500 Гц мы наблюдаем значительное ослабление.

что такое спектр сигнала. Смотреть фото что такое спектр сигнала. Смотреть картинку что такое спектр сигнала. Картинка про что такое спектр сигнала. Фото что такое спектр сигнала

А здесь усиливаются только низкие частоты. Аудио-аппаратура с такой АЧХ будет обладать высоким уровнем басов 🙂

На этом мы заканчиваем нашу сегодняшнюю статью… Спасибо за внимание и ждем вас на нашем сайте снова!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *