что такое симплексный метод

Калькулятор симплекс-метода

Как пользоваться калькулятором

Что умеет калькулятор симплекс-метода

Что такое симплекс-метод

Задача линейного программирования — это задача поиска неотрицательных значений параметров, на которых заданная линейная функция достигает своего максимума или минимума при заданных линейных ограничениях.

Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве. Алгоритм является универсальным методом, которым можно решить любую задачу линейного программирования.

Если вам тоже ничего не понятно из этого определения, то вы на верном пути. Чаще всего статьи про симплекс-метод очень сильно углубляются в дебри теории задачи линейного программирования, из-за чего очень легко потерять суть и так ничего и не понять. Мы постараемся описать алгоритм симплекс-метода так, чтобы показать, что в нём нет ничего страшного и на самом деле он весьма простой. Но сначала нам всё-таки потребуется ввести несколько определений.

Алгоритм решения основной задачи ЛП симплекс-методом

Чтобы привести ограничения с неравенствами к каноническому виду, для каждого ограничения вводят переменную, называемую дополнительной с коэффициентом 1. В ответе эти переменные учитываться не будут, однако сильно упростят начальные вычисления. При этом дополнительные переменные являются базисными, а потому могут быть использованы для формирования начального опорного решения.

Формирование начального базиса

После того как задача приведена к каноническому виду, необходимо найти начальный базис для формирования первого опорного решения. Если в процессе приведения были добавлены дополнительные переменные, то они становятся базисными.

Иначе необходимо выделить среди коэффициентов ограничений столбец, который участвует в формировании единичной матрицы в заданной строке (например, если требуется определить вторую базисную переменную, то необходимо искать столбец, в котором второе число равно 1, а остальные равны нулю). Если такой столбец найден, то переменная, соответствующая этому столбцу, становится базисной.

В противном случае можно поискать столбец, в котором все значения кроме числа в заданной строке равны нулю, и, если он будет найден, то разделить все значения строки на число, стоящее на пересечении этих строки и столбца, тем самым образовав столбец, участвующий в формировании единичной матрицы.

Если такой столбец отсутствует, то для формирования базиса необходимо применить исключение Гаусса для первого ненулевого столбца, который ещё не является базисным. Для этого вся строка делится на элемент в найденном столбце, а из остальных строк вычитается полученная строка, разделённая на значение, стоящее в этом же столбце. После этой операции все значения вне данной строки будут обнулены, и столбец можно будет считать базисным.

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x5

Начальная симплекс-таблица

базисx1x2x3x4x5b
x423610240
?42400160
x546801200

Для определения второй базисной переменной ищем первый ненулевой столбец, который ещё не является базисным. Первый столбец не нулевой и не является базисным. Выполняем исключение Гаусса: делим строку 2 на 4, а из первой и третьей строк вычитаем вторую, умноженную на соответствующий элемент в первом столбце.

базисx1x2x3x4x5b
x423610240
x142400160
x546801200

После исключения получаем следующую таблицу:

После того как базис сформирован, нужно построить начальную симплекс-таблицу. Она строится следующим образом:

Схематично начальная таблица будет выглядеть примерно так:

базисx1x2x3x4x5b
x402410160
x11
Cс1c2.cn00.00
базисx1x2.xnxn+1xn+2.xn+kb
xe1a11a12.a1na1n+1a1n+2.a1n+kb1
xe2a21a22.a2na2n+1a2n+2.a2n+kb2
..........
xemam1am2.amnamn+1amn+2.amn+kbm

Избавляемся от отрицательных свободных коэффициентов

После приведения к каноническому виду или после алгебраических преобразований при формировании базиса некоторые из свободных коэффициентов (bi) могли стать отрицательными, что не позволяет перейти к дальнейшим вычислениям. Чтобы избавиться от отрицательных значений b необходимо:

Этот шаг необходимо повторять до тех пор, пока все отрицательные b не станут положительными или в строке не останется отрицательных элементов. Если строка с максимальным по модулю bi не содержит отрицательных элементов, то такая задача не имеет решений и на этом алгоритм заканчивает свою работу. В противном случае все bi положительны и алгоритм переходит к следующему этапу — расчёту дельт.

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 2 содержит неравенство, базисной будет добавленная дополнительная переменная x5
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x6

Источник

Симплексный метод решения ЗЛП

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях)Доход G(X)
123
0000
1283032
2414245
3505548
4626460
5767672

Экстремальное решение достигается на границе области допустимых решений в одной из вершин угловых точек многоугольника, либо на отрезке между двумя соседними угловыми точками.

Суть симплекс-метода. Движение к точке оптимума осуществляется путем перехода от одной угловой точки к соседней, которая ближе и быстрее приближает к Xопт. Такую схему перебора точек, называемую симплекс-метод, предложил Р. Данцигом.
Угловые точки характеризуются m базисными переменными, поэтому переход от одной угловой точки к соседней возможно осуществить сменой в базисе только одной базисной переменной на переменную из небазиса.
Реализация симплекс-метода в силу различных особенностей и постановок задач ЛП имеет различные модификации.

Построение симплекс-таблиц продолжается до тех пор, пока не будет получено оптимальное решение.

Как с помощью симплекс-таблицы определить, что решение задачи линейного программирования является оптимальным?
Если последняя строка (значения целевой функции) не содержит отрицательных элементов, следовательно, найдет оптимальный план.

Если задано условие «Необходимо, чтобы сырье III вида было израсходовано полностью», то соответствующее условие представляет собой равенство.

Аналитическое введение в симплекс-метод

Например, пусть дана система
что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Совокупность переменных x1 и x2 образует базис: Б (x1, x2). Если x3 = 0, то полученное частное решение (5, 11, 0) называется базисным решением, соответствующим базису Б (x1, x2).

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Базисное решение, соответствующее базису Б (x1, x3), таково: (-19/5; 0; 11/5).

Если теперь от базиса Б (x1, x3) нам захочется перейти к базису Б (x2, x3), то
что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

На этом примере очень наглядно продемонстрирована идея метода: постепенно переходя от базиса к базису, при этом всегда обращая внимание на значения целевой функции, которые должны улучшиться, мы приходим к такому базису, в котором значение целевой функции улучшить нельзя, оно оптимально. Заметим, что базисов конечное число, поэтому количество шагов, совершаемых нами до того нужного базиса, конечно.

Источник

Подробный разбор симплекс-метода

Пролог

Недавно появилась необходимость создать с нуля программу, реализующую алгоритм симплекс-метода. Но в ходе решения я столкнулся с проблемой: в интернете не так уж много ресурсов, на которых можно посмотреть подробный теоретический разбор алгоритма (его обоснование: почему мы делаем те или иные шаги) и советы по практической реализации — непосредственно, алгоритм. Тогда я дал себе обещание — как только завершу задачу, напишу свой пост на эту тему. Об этом, собственно, и поговорим.

Замечание. Пост будет написан достаточно формальным языком, но будет снабжен комментариями, которые должны внести некоторую ясность. Такой формат позволит сохранить научный подход и при этом, возможно, поможет некоторым в изучении данного вопроса.

§1. Постановка задачи линейного программирования

Определение: Линейное программирование – математическая дисциплина, посвященная теории и методам решения экстремальных задач на множествах n- мерного пространства, задаваемых системами линейными уравнений и неравенств.

Общая задача линейного программирования (далее – ЛП) имеет вид:

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

§2. Каноническая форма задачи ЛП

Каноническая форма задачи ЛП:

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Замечание: Любая задача ЛП сводится к канонической.

Алгоритм перехода от произвольной задачи ЛП к канонической форме:

Замечание: что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод≥0.

§3. Угловые точки. Базисные/свободные переменные. Базисные решения

Определение: Точка что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный методназывается угловой точкой, если представление что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный методвозможно только при что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод.

Иными словами, невозможно найти две точки в области, интервал проходящий через которые содержит что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод(т.е. что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод– не внутренняя точка).

Графический способ решения задачи ЛП показывает, что нахождение оптимального решения ассоциируется с угловой точкой. Это является основной концепцией при разработке симплекс-метода.

Определение: Пусть есть система m уравнений и n неизвестных (m

Источник

Симплексный метод решения задач линейного программирования

Симплексный метод решения задач линейного программирования

Введение

Общая постановка задачи

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

а) Если система ограничений ЗЛП обладает хотя бы одним решением, она называется совместной в противном случае несовместной; б) Допустимое множество решений ЗЛП не пусто, если система ограничений совместна; в) Множество допустимых решений ЗЛП (если оно не пусто) в общем случае является многогранным множеством. Линейная функция Q(X ) называется функцией цели, целевой функцией (ЦФ), множество планов <X > удовлетворяющих системе ограничений (2) – (5), ­­- множеством допустимых решений (альтернатив) и обозначается символом R, X є Ω Допустимый план X є Ω, доставляющий целевой функции (1) экстремальное значение, называется оптимальным. Задача в форме (1) – (5) представляет общую задачу линейного программирования.

Cтандартная форма задачи

Если все ограничения задачи заданы в виде строгих равенств и на переменные величины наложено условие неотрицатаельности xj ≥0, j = 1(1)n, то такую формулировку называют стандартной:

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Экстремумы функций в общем случае связаны простыми соотношениями

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Переход от общей задачи к стандартной

Каноническая форма задачи

Удобство этой формы ЗЛП состоит в том, что она позволяет предельно просто получить первое допустимое решение. Для этой формы должны быть выполнены условия:

правые части в ограничениях – неотрицательны bi ≥ 0, i = 1(1)m;

каждое уравнение содержит переменную xj ≥0 с коэффициентом при ней равным “1” в этом уравнении и с коэффициентом “0” во всех других уравнениях; эти переменные называют дополнительными или искусственными;

в ЦФ эти переменные входят с коэффициентом “0”;

определение опорного плана (начальной вершины) выполняют методом искусственного базиса, что ещё до решения задачи позволяет выяснить факт существования решения.

Если исходная задача имеет хотя бы один план, то расширенная задача (после введения искусственных переменных в систему ограничений) также содержит этот план в качестве своего допустимого решения

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Геометрическая интерпретация ЗЛП

Выпишем их и присвоим им имена

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Целевая функция. Что можно сказать о линейной форме (ЦФ)? Это функция двух переменных x1 и x2, её образ в трёхмерном пространстве – плоскость, проходящая через начало координат. Найдём частные производные ЦФ по хj

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Таким образом, перемещаясь вдоль вектора C или по прямой х22х1/c1, легко построить линию уровня (она перпендикулярна х2 = с2х1/c1 ) и вычислить значение ЦФ Q для этой линии. Экстремум Q, очевидно, будет достигаться в положении касания линией уровня (её проекцией) границы множества допустимых решений. Такое касание может быть трёх типов: в вершине, по ребру, по грани многогранника. Этим типам касания соответствуют: единственное решение в вершине и бесконечное множество решений в других случаях. Область допустимых решений. Рассмотрим случаи ограниченной и неограниченной области допустимых решений. В последнем случае поиск экстремума Q может приводить к отсутствию решения, так как extr Q → ±∞ или существует опорная прямая линия, касающаяся неограниченного многогранника, и тогда решение существует.

Пример. Описание области допустимых решений.

Мы можем записать уравнение границы области D заданной неравенствами:

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Теорема 1. Любой вектор n-мерного векторного пространства можно представить, как линейную комбинацию векторов базиса, притом единственным образом. Определение 2.5. Максимальное число линейно независимых векторов линейного пространства называется размерностью линейного пространства. Линейное пространство обычно обозначают, Rn где n – его размерность. Выпуклой оболочкой точек называется множество всевозможных выпуклых комбинаций этих точек. Множество называется выпуклым, если вместе с двумя любыми его точками оно содержит и их произвольную выпуклую линейную комбинацию. С геометрической точки зрения это означает, что выпуклое множество содержит вместе с любыми двумя своими точками и соединяющий их отрезок. Выпуклое множество совпадает со своей выпуклой оболочкой. Примерами выпуклых множеств являются прямолинейный отрезок, квадрат, круг, прямая, полуплоскость, куб, шар, полупространство и другие. Угловыми точками выпуклого множества называются точки, не являющиеся выпуклой линейной комбинацией двух произвольных точек множества. Например, угловыми точками треугольника являются его вершины, угловыми точками круга – точки окружности. Таким образом, выпуклое множество может иметь конечное или бесконечное число угловых точек, но может не иметь их совсем. Например, прямая, плоскость, полуплоскость, пространство, полупространство угловых точек не имеют. Одним из основных понятий теории линейного программирования является понятие выпуклого многогранника в n-мерном пространстве, частными случаями которого являются при n = 1 отрезок на прямой, при n = 2 выпуклый многоугольник на плоскости. Выпуклым многоугольником называется выпуклое замкнутое ограниченное множество точек на плоскости, имеющее конечное число угловых точек, называемых вершинами. Прямолинейные отрезки, соединяющие две вершины и образующие границу, называются сторонами многоугольника.

Опорной прямой выпуклого многоугольника называется прямая, имеющая с многоугольником, расположенным по одну сторону от нее, хотя бы одну общую точку.

Выпуклым многогранником называется выпуклое замкнутое ограниченное множество точек пространства, имеющее конечное число угловых точек, называемых его вершинами. Многоугольники, ограничивающие многогранник, называются его гранями, а отрезки, по которым пересекаются грани, называются ребрами. Опорной плоскостью многогранника называется плоскость, имеющая с многогранником, расположенным по одну сторону от нее, хотя бы одну общую точку.

Теорема 2.2. Выпуклый n-мерный многогранник является выпуклой линейной комбинацией своих угловых точек.

Следствие 2.3. Из теоремы вытекает, что выпуклый многогранник порождается своими угловыми точками (вершинами): отрезок – двумя точками, треугольник – тремя точками, n – угольник на плоскости – n точками и т. д. В тоже время выпуклая многогранная область, содержащая бесконечно удаленную точку, являясь неограниченным множеством, не определяется однозначно своими угловыми точками: любую ее точку нельзя представить в виде выпуклой линейной комбинации угловых точек.

Элементы выпуклых множеств

Определение 1. Множеством называется совокупность элементов любой природы, для которых задано правило принадлежности к данному множеству.

Определение 7. Множество М называется в ы п у к л ы м, если вместе с любыми двумя точками, принадлежащими данному множеству, оно содержит и отрезок их соединяющий. В общей форме ЗЛП каждый символ R1, R2, …, Rm означает один из знаков: = или ≠. В такой форме задачи линейного программирования часть переменных может быть подчинена условию неотрицательности (xi 0), часть – условию неположительности (xj 0), а какие-то переменные, возможно, могут принимать любые значения.

Общий алгоритм симплексного метода ЗЛП

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Пусть система невырожденна и совместна, т.е. rA = rB = r = m что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Все введённые переменные в новых обозначениях удобно свести в таблицу, которая называется симплексной.

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Алгоритм решения

1) Формируем исходный план при свободных переменных; xj =0, j = m+1(1)n, xj = βф, ф = 1(1)m при βф > 0 план x o допустим Q(x) =xo.

2) Проверяем этот план на оптимальность, используя значения γj коэффициентов ЦФ в последней строке таблицы. Могут быть два случая:

б) некоторые γj > 0. В этом случае увеличение значений соответствующих свободных переменных xj (γj > 0) будет минимизировать Q, так как

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Чтобы Q уменьшалось, такие переменные следует вводить (последовательно) в базис, но, чтобы размерность пространства не изменялась из базиса должны выводиться переменные в число свободных (по одной) формируем множество индексов Г = < j | γj >0>. Какая переменная должна первой вводиться в базис? Вообще последовательно перебирая (вершины симплекса) решение отыскивается при произвольном выборе, но для определённости выбираем новую базисную переменную с индексом v = argmax <xj>, где j ∈ Г. Теперь определим переменную (базисную), которая будет выводиться из базиса.

В системе уравнений

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Начинаем увеличивать хv до тех пор, пока некоторый хф станет отрицательным. Первый же хф ≤ 0 будет выводиться из базиса. Определение. Столбец с индексом v и строка с индексом ф = i называются направляющими.

3) Проверка существования решения (ограниченность ЗЛП). В выражениях, связывающих х, ∝, β, хф = βф -∝фvхv, ф=1(1)m, могут быть все фv 0. Пусть ЦФ ограничена и некоторые фv > 0. Сформируем множество индексов S = < ф | фv >0>. Из базиса необходимо выводить переменную с индексом i, так как она первая обращается в нуль, i = argmin(βф/фv), где ф∈S, таким образом, базисная переменная xi выводится из базиса.

4) Формируем новые множества:

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Дальнейшие действия алгоритма:

преобразуем задачу, т.е. все базисные переменные и целевую функцию выражаем через свободные переменные;

заполняем новую симплексную таблицу;

делаем все свободные переменные хj = 0 и находим опорный план;

Опорный план (вектор) такой Х’ = ; Q(Х’ ) Q0 ;

если план не оптимален, то определяем направляющий столбец;

проверяем существует ли оптимальный план;

если оптимальный план существует, то находим направляющую строку и вновь изменяем базис и т. д.

Переход от одной таблицы к другой связан с трудоемкими расчетами (о чем надо еще написать) Вводимую в базис переменную хν (икс ню) выражаем через свободные переменные и выводимую хi. Действуем так.

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

При ручном счете все эти действия проще выполнять с использованием вспомогательных таблиц по правилам специального алгоритма. Эти таблицы имеют прежнюю структуру, но клетки делятся на две полуклетки. В верхней полуклетке оставляем содержимое из прежней таблицы.

При решении задач линейного программирования вычисляются ранги у матрицы ограничений и расширенной матрицы ранги должны быть равны r=m.

Матрица и её ранг. Система mn чисел, расположенных в форме прямоугольной таблицы из m строк и n столбцов, называется матрицей.

Определение. Минором k-го порядка матрицы [A] (k ≤ m, k ≤ n) называется определитель D, составленный (с сохранением порядка) из k 2 элементов матрицы, лежащих на пересечении некоторых её k столбцов и k строк См. схему выше минор D из 3-х строк и 3-х столбцов. Обозначается матрица символами:

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный методМатрица А и ее миноры с различным окаймлением

Приведем пример вычисления ранга матрицы.

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

С выполнением каждого шага связаны процедуры:

1. Получение опорного плана; 2. устанавливается, является ли данный опорный план оптимальным; 3. если нет, то существует ли оптимальный план вообще, или задача является неограниченной; 4. если оптимальный план существует, то, как перейти на следующем шаге, к новому опорному плану с меньшим значением ЦФ.

Алгоритм СМ применяется к ЗЛП после её приведения к канонической форме, т.е. отыскивается минимум целевой функции min Q(X) на множестве векторов Х .

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

(здесь xe, e =(m+1)(1)n). Матрица этой системы неособенная и, следовательно, система имеет единственное решение xj , j =1(1)m.

Исходный опорный план ЗЛП – вектор, содержащий значения всех переменных задачи как базисных, так и свободных, т.е. этот вектор Х , удовлетворяет ограничениям, но не обеспечивает, как правило, экстремума ЦФ. Общее число опорных планов очевидно равно числу сочетаний из n по m. Оптимальный план можно выявить, перебрав их все. Такой путь громоздок и неприемлем уже при n, m ≈ 10 ÷15.

Алгоритм СМ тоже перебирает опорные планы, но не все, а направленно, т.е. на каждом шаге ЦФ уменьшается. Число шагов имеет тот же порядок, что и число уравнений в ограничениях.

Приведем пояснения некоторым понятиям и терминам, широко используемым в алгоритме решения задач линейного программирования симплексным методом и тесно связанными с ним методами.

Определение. Системой линейных уравнений называют систему следующего вида. Ранг матрицы определяется через миноры r = – 5.

что такое симплексный метод. Смотреть фото что такое симплексный метод. Смотреть картинку что такое симплексный метод. Картинка про что такое симплексный метод. Фото что такое симплексный метод

Определение. Симплекс – выпуклый многоугольник в n-мерном пространстве с n + 1 вершинами, не лежащими в одной гиперплоскости. Симплексы выделены в отдельный класс потому, что в n-мерном пространстве n точек всегда лежат в одной гиперплоскости. Другими словами, симплекс – это простейший многоугольник, содержащий некоторый объем n-мерного пространства. В обычном (трехмерном) пространстве симплекс – это тетраэдр; трехмерный объем совпадает с объемом тела. На плоскости симплекс – это треугольник, двумерный объем – площадь; на прямой – симплекс – отрезок, объем – длина отрезка.

Определение. Гиперпространство, гиперплоскость. Гиперпространство многомерного (n-мерного) пространства – это его подпространство размерности (n – 1). Главное свойство гиперпространства – то, что оно «самое большое» подпространство. Иначе говоря, если к базису выбранного гиперпространства добавить еще один линейно независимый вектор, то можно получить базис всего пространства.

Например, для трехмерного пространства гиперпространством является плоскость (любая), проходящая через начало координат. Для двумерного пространства – гиперпространство – это прямая линия, проходящая через нуль.

Гиперплоскость в n-мерном пространстве обобщает наши представления о роли прямой на плоскости и плоскости в пространстве. Например, в n-мерном пространстве через любые n точек можно провести единственную гиперплоскость (как в трехмерном через три точки общего положения, т.е. не лежащие на одной прямой).

Гиперплоскость определяется линейной формой: а1х1 + а2х2 + … + аnxn = k, где коэффициенты (а1, а2, …, аn) представляют собой координаты вектора А.

Гиперплоскость делит пространство (соответствующей размерности) на два полупространства. Все точки каждого из них определяются неравенствами. Например, в случае прямой линии на плоскости: а1х1 + а2х2 Z, или а1х1 + а2х2 >Z , а1х1 + а2х2 Литература

Ваулин А. Е. Методы цифровой обработки данных.– СПб.: ВИККИ им. А. Ф. Можайского, 1993.– 106 с.

Гэри М., Джонсон Д. Вычислительные машины и трудно решаемые задачи. М.: Мир, 1982.

Корбут А.А., Финкельштейн Ю. Ю. Дискретное программирование М. Наука. Гл. ред. физ.-мат. лит. 1969.

Макаров И. М. и др. Теория выбора и принятия решений.– М.: Наука, 1982.– 328 с.

Пфанцагль И. Теория измерений. – М.: Наука, 1988.–384 с.

Таха Х. А. Введение в исследование операций. 7-е изд. М.: Изд. дом «Вильямс», 2005.

Фишберн П. С. Теория полезности для принятия решений. – М.: Наука,1978. –352 с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *