Что такое шаговое напряжение и напряжение прикосновения
Напряжение шага и прикосновения
Рис. Схема прикосновения человека к заземленному оборудованию при напряжении прикосновения:
Напряжение прикосновения и величина тока, протекающего через организм человека при нормальном (неаварийном) режиме работы электроустановки переменного тока частотой 50 Гц, не должны превышать соответственно 2 В и 0,3 мА.
Снизить напряжение прикосновения и силу тока можно за счет малого сопротивления системы защитного заземления или увеличения потенциала поверхности в зоне растекания тока на землю.
При наличии токопроводящих полов или грунта человек, находящийся недалеко от корпуса электрооборудования, на которое произошло замыкание тока, может оказаться под напряжением шага U Напряжение шага возникает вокруг места перехода тока от поврежденной электроустановки в землю.
Характер распределения потенциалов на земной поверхности подчиняется гиперболическому закону.
На расстоянии 1 м от места стекания тока на землю потенциал снижается на 68%, на расстоянии 10 м снижение достигает 92%, а на расстоянии 20 м потенциал точек земли практически равен нулю. Такое распределение потенциалов объясняется тем, что вблизи заземлителя площадь проводника-земли малая, поэтому здесь земля оказывает большое сопротивление прохождению тока. По мере удаления от заземлителя сечение проводника-земли увеличивается, сопротивление его уменьшается, следовательно, и падение напряжения уменьшается. На расстоянии более 20 м от места замыкания тока земля практически не оказывает сопротивления прохождению тока.
Человек, находясь в зоне растекания тока, даже не прикасаясь к поврежденному оборудованию, может попасть под высокое напряжение.
Это происходит потому, что различные точки земли, которых касаются ноги человека, имеют различные потенциалы.
Из равенства следует, что напряжение шага зависит от тока замыкания, ширины шага, расстояния от человека до места замыкания тока на землю, а также от удельного сопротивления грунта. По мере удаления от места замыкания напряжение шага становится меньше.
Следует отметить, что характер зависимости напряжения шага от расстояния между человеком и заземлителем противоположен той же зависимости напряжения прикосновения, которое увеличивается с увеличением расстояния.
Оказавшись в зоне напряжения шага, выходить из нее следует небольшими шагами (гусиными скользящими шагами) в сторону, противоположную месту предполагаемого замыкания на землю и, в частности, лежащего на земле провода.
Что такое напряжение прикосновения и напряжение шага?
В любых электрических сетях человек, находящийся в зоне растекания тока, может оказаться под напряжением шага и напряжением прикосновения.
Шаговым напряжением (напряжением шага) называется напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага (0,8 м) и на которых одновременно стоит человек.
Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, так как сечение проводника (почвы) увеличивается пропорционально квадрату радиуса, и на расстоянии, примерно равном 20 м, может быть принят равным нулю. Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает: напряжение шага возрастает, так как ток проходит уже не через ноги, а через все тело человека.
Напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно касается человек. Опасность такого прикосновения оценивается значением тока, проходящего через тело человека, или же напряжением прикосновения и зависит от ряда факторов: схемы замыкания цепи тока через тело человека напряжения сети, схемы самой сети, режима ее нейтрали (т.е. заземлена или изолирована нейтраль), степени изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т.д.
Величина напряжения прикосновения для человека, стоящего на грунте и коснувшегося оказавшегося под напряжением заземленного корпуса может быть определена как разность потенциалов руки (корпуса) и ноги (грунта) с учетом коэффициентов:
Наиболее опасным для человека является прикосновение к корпусу, находящемуся под напряжением и расположенному вне поля растекания.
Напряжением шага (шаговым напряжением) называется напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек (ГОСТ 12. 1. 009-76).
По территории завода был проложен временный гибкий кабель. Кабель лежал на пути перемещения ручной тележки, поэтому в этом месте он был прикрыт железным листом, при перемещении груженой тележки кабель был поврежден и одна из его жил была в соприкосновении с листом. В результате вокруг листа возникло шаговое напряжение.
Что такое шаговое напряжение и напряжение прикосновения?
Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» шаговым напряжением (напряжением шага) называется напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага (0,8 м) и на которых одновременно стоит человек.
Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, так как сечение проводника (почвы) увеличивается пропорционально квадрату радиуса, и на расстоянии, примерно равном 20 м, может быть принято равным нулю.
Поражение при шаговом напряжении усугубляется тем, что из-за судорожных сокращений мышц ног человек может упасть, после чего цепь замыкается на теле через жизненно важные органы. Кроме того, рост человека больше длины его шага, и это обусловливает большую разность потенциалов, приложенных к его телу.
Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно касается человек.
Предельно допустимые уровни напряжений прикосновения установлены ГОСТ 12.1.038-83 «ССБТ. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов» для путей тока от одной руки к другой и от руки к ногам.
Опасность такого прикосновения оценивается значением тока, проходящего через тело человека, или же напряжением прикосновения и зависит от ряда факторов: схемы замыкания цепи тока через тело человека, напряжения сети, схемы самой сети, режима ее нейтрали (т. е. заземлена или изолирована нейтраль), степени изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и др.
Шаговое напряжение
Что такое шаговое напряжение
Шаговое напряжение – это разность потенциалов (напряжения) на участке в токовой цепи. Показатель шагового напряжения зависит от силы тока и удельного сопротивления почвы. Он представляет собой расстояние (разность потенциалов) между двух ног человека. Величина шагового напряжения используется при создании зануления и заземления, измерении опасности в местах аварий. На значение влияет форма кривой напряжения.
Возле упавшего провода находящегося под напряжением, возникает область рассеивания электричества. На расстоянии от 20 метров до места падения провода, напряжение может не ощущаться, плотность тока становится минимальной.
Действие шагового напряжения прекращается, но внутри тела возникает новый путь электричества. Ток протекает от рук к ногам, в результате возникает реальная угроза смерти. При попадании в такую ситуацию человек должен выходить с опасной зоны гусиным шагом. Минимальное расстояние между ногами – это залог безопасности и благополучного выхода.
Максимальный радиус шагового напряжения
8 метров – это максимальный радиус поражения (выше 1000 В). Расстояние с 5 метров характеризуется мощностью ниже 1000 В. При спасении пострадавшего стоит действовать рассудительно. Предварительно обмотайте руки сухой тканью, передвигайтесь небольшими шагами, медленно оттяните человека с опасной зоны.
Угроза попадания в область шагового напряжения существует и в бытовых условиях. В такую ситуацию вы можете попасть, прикоснувшись к оголенному проводу неисправного прибора. В таком случае образуется электрическая цепь, опасная для жизни. Для устранения угрозы в щитке устанавливается устройство защитного отключения. Альтернативный вариант – это разработка системы заземления и контроля потенциалов.
Правила перемещения в зоне шагового напряжения
В промышленных условиях для перемещения в зоне высокого риска шагового напряжения перемещаться следуют в галошах или диэлектрических ботах. При случайном попадании в опасное место нужно замедлить шаг. Максимально сократите расстояние между ногами во время ходьбы – приставляйте носок к пятке, имитируя гусиный шаг. Запрещается приближаться к оголенным проводам на расстояние менее 8 метров, выполнять такие действия допускается при наличии средств защиты.
Класс напряжения и удельное сопротивление грунта определяют шаговое напряжение. Радиус действия увеличивается при повышении влажности из-за увеличения территории растекания тока.
Выход из зоны шагового напряжения
При выходе из зоны шагового напряжения стоит придерживаться осторожности. Нельзя допускать падения на поверхность земли – такая ситуация может привести к летальному исходу. На грунте влияние электричества повышается, у человека возникают судороги. При отсутствии своевременной помощи, поражение нервной системы приводит к параличу. В этот момент человек испытывает сильную боль и не может шевелить конечностями.
Выбор способа выхода из опасной зоны зависит от конкретной ситуации. После идентификации проблемы необходимо быстро сомкнуть обе ноги вместе, что снизит разницу электрических потенциалов. При передвижении нужно стараться не отрывать нижние конечности от земли.
Помощь могут оказать сухие доски, оказавшиеся по пути выхода с опасной территории. Сухая древесина – это отличный диэлектрик, поэтому смело ступайте на нее во время движения. По пути избегайте кирпичных и железобетонных конструкций.
В некоторых ситуациях целесообразно перемещаться на одной ноге. Выбирать этот способ надо только при полной уверенности в адекватности своего состояния. Напуганный человек может потерять ориентацию и упасть на поверхность земли, что приведет к летальному исходу. Самый надежный способ – это перемещение «гусиным шагом». Не делайте резких движений, не ускоряйте шаг и не бегите. Действуйте спокойно и принимайте взвешенные решения.
При выходе стоит исключить вариант с шагом по спирали и в направлении другого кабеля. При соблюдении правил, у человека есть большие шансы покинуть опасную зону без последствий для здоровья, такие ситуации встречаются в 80% случаев.
Расчет шагового напряжения
Для расчета шагового напряжения необходимо знать особенности распределения тока в месте аварии. Электричество растекается в толще земли и кругами на ее поверхности. Для нахождения значения учитывается величина сопротивления грунта. Напряжение зависит от ряда факторов:
При расчете шагового напряжения применяются средние величины. Сначала определяется короткое замыкание по формуле:
где UPHASE – это напряжение фазы;
RKONT и R0- величина сопротивления для электрического контура (заземления и растекания тока вместе аварии);
ICS – это ток короткого замыкания в сети.
Длину шага принято считать за 0,8 метра. Для нахождения шагового напряжения применяют соотношение:
Где, р – сопротивление поверхности земли удельное;
х- расстояния от оголенного контура;
В промышленных условиях расчетом показателей занимаются отдельные специалисты. Они периодически проводят замеры и находят средние значения для подведения итогов об уровне безопасности.
Как освободить человека?
Для спасения человека необходимо разорвать электрическую сеть – выключить автомат питания (линию) или рубильник. При отсутствии такой возможности обмотать руки сухой тканью, попытаться освободить человека от воздействия электрического тока с помощью деревянной палки.
Далее следуйте алгоритму действий:
Убедитесь, что электрическая линия отключена от источника питания и выходите с опасной зоны.
Начните делать непрямой массаж сердца, легочную реанимацию и вызовите бригаду неотложной помощи. Если человек находится в сознании, поверните его на бок, так вы устраните риск попадания рвотных масс в дыхательные пути.
Методы снижения шагового напряжения на предприятиях
В промышленных условиях создаются правила безопасности и способы предупреждения аварийных ситуаций. Для разработки методов снижения шагового напряжения на предприятии необходимо выделить виды воздействия тока на человека:
Для предупреждения воздействия высоких температур специалисты работают в костюме с высоким уровнем защиты от тепла. Такая униформа имеет многослойную структуру и производится из особых синтетических материалов. Они не воспламеняются, защищают кровь и лимфу от перегрева.
Защищает костюм и от электрического воздействия, после превышения которого происходит разложение клеток крови. Для правильного подбора защитных средств стоит знать основные варианты прохождения тока через тело.
Угроза жизни возрастает, если на пути тока встречаются жизненно необходимые органы (сердце и мозг). Из схем можно сделать вывод, что чаще всего электричество начинает путь с руки, головы и ноги. Эти части тела больше всего нуждаются в защите при работе человека в экстремальных условиях. По технике безопасности работник не получает доступ к объекту без специальных средств и прохождения ряда инструктажей.
Причиной аварийной ситуации может стать несоблюдение правил безопасности и контроля за электрическим оборудованием на предприятии. Для предотвращения опасных ситуаций в промышленной сфере проводятся проверки и тестирования. Систематически контролируется изоляция проводов и кабелей, специалисты следят за сроками эксплуатации отдельных элементов системы.
Угроза жизни становится реальной при недостаточной компетентности работников. Незнание элементарных правил безопасности и пренебрежение средствами защиты, часто становится причиной трагедий. Для предупреждения аварийных ситуаций, на предприятиях проводятся целевые и повторные инструктажи, позволяющие сотрудникам повысить уровень квалификации. Вводные инструктажи предназначены для ознакомления специалистов с новым видом оборудования.
Специальные средства защиты на предприятии имеют срок годности. Руководство компании обязано следить за качеством и пригодностью таких вещей. Для повышения контроля за соблюдением правил и стандартов на предприятии создается комиссия по охране труда. Ее сотрудники проводят работы по ознакомлению работников с важной информацией, контролируют выполнение обязанностей и занимаются отчетами в сфере безопасности.
Современные технологии позволяют значительно снизить риск возникновения шагового напряжения. Некоторое оборудование имеет функцию автоматической блокировки при возникновении повреждений в электрической сети. Такие возможности позволяют значительно повысить уровень безопасности и снизить количество несчастных случаев на предприятии.
В комплексе методы снижения шагового напряжения дают отличные результаты. Автоматизированные предприятия, работающие с инновационным оборудованием, практически никогда не встречаются с аварийными ситуациями.
Сегодня средства защиты от электрического тока отличаются высокой эффективностью. При условии правильного использования спецодежды и следования правилам безопасности риск возникновения трагической ситуации значительно снижается. Контроль за всеми процессами в сфере электрики минимизирует шансы поражения током.
Шаговое напряжение и напряжение прикосновения
В любых электрических сетях человек, находящийся в зоне растекания тока, может оказаться под напряжением шага и напряжением прикосновения.
Шаговым напряжением (напряжением шага) называется напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага (0,8 м) и на которых одновременно стоит человек.
Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, так как сечение проводника (почвы) увеличивается пропорционально квадрату радиуса, и на расстоянии, примерно равном 20 м, может быть принят равным нулю. Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает: напряжение шага возрастает, так как ток проходит уже не через ноги, а через все тело человека.
Напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно касается человек. Опасность такого прикосновения оценивается значением тока, проходящего через тело человека, или же напряжением прикосновения и зависит от ряда факторов: схемы замыкания цепи тока через тело человека напряжения сети, схемы самой сети, режима ее нейтрали (т.е. заземлена или изолирована нейтраль), степени изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т.д.
Изменение потенциала в пределах площадки, на которой размещены электроды заземлителя, происходит плавно. При этом напряжение прикосновения Uпр и напряжение шага Uшимеют небольшие значения по сравнению с потенциалом заземлителя. Однако за пределами контура по его краям наблюдается крутой спад потенциала. Чтобы исключить в этих местах опасные напряжения шага, которые особенно высоки при больших токах замыкания на землю, по краям контура за его пределами (в первую очередь в местах проходов и проездов) укладывают в землю на различной глубине дополнительные стальные полосы, соединенные с заземлителем. Тогда спад потенциала в этих местах происходит по пологой кривой.
Внутри помещений выравнивание потенциалов происходит благодаря металлическим конструкциям, трубопроводам, кабелям и подобным им проводящим предметам, связанным с разветвленной сетью заземления. Арматура железобетонных зданий также способствует выравнивание потенциалов.
38.Шаговое напряжение и напряжение прикосновения. Выравнивание потенциалов.
Шаговое напряжение — напряжение, обусловленное электрическим током, протекающим в земле или токопроводящем полу, и равное разности потенциалов между двумя точками поверхности земли (пола), находящимися на расстоянии одного шага человека. Шаговое напряжение зависит от длины шага, удельного сопротивления грунта и силыпротекающего через него тока. Опасное шаговое напряжение может возникнуть, например, около упавшего на землю провода под напряжением или вблизи заземлителей электроустановок при аварийном коротком замыкании на землю (допустимые значения сопротивления заземлителей и удельное сопротивление грунта нормируются для того, чтобы избежать подобной ситуации). [1] При попадании под шаговое напряжение возникают непроизвольные судорожные сокращения мышц ног и, как следствие, падение человека на землю. Ток начинает проходить между новыми точками опоры — например, от рук к ногам, что чревато смертельным поражением. При подозрении на шаговое напряжение надо покинуть опасную зону минимальными шажками («гусиным шагом») или прыжками. Особо опасно шаговое напряжение для крупного рогатого скота, так как расстояние между передними и задними ногами у этих животных очень велико и, соответственно, велико напряжение, под которое они попадают. Нередки случаи гибели скота от шагового напряжения.
Напряжение прикосновения — напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного. Ожидаемое напряжение прикосновения — напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается.
Выравнивание потенциалов — снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.
39.Устройство заземлений и занулений как мероприятий электробезопасности и пожарной безопасности.
Заземление или зануление применяют во всех случаях при напряже-
нии 380 В (и выше) переменного и 440 В и выше постоянного тока. В помещениях с повышенной опасностью, особо опасных, в наружных установках эти защитные меры применяют при напряжениях выше 42 В переменного и 110 В постоянного тока. Заземлять или занулять необходимо следующие части электроустановок: корпуса трансформаторов; рамы и приводы выключателей и других коммутационных аппаратов; вторичные обмотки измерительных трансформаторов; каркасы распределительных щитов и щитков, пультов и щитов управления, шкафов с электрооборудованием. Съемные или открывающиеся части щитов и шкафов должны быть занулены отдельным гибким проводником, если на этих частях установлено электрооборудование напряжением выше 42 В переменного или 110 В постоянного тока. Зануляют также металлические оболочки и броню кабелей, проводов, металлические кабельные конструкции и муфты, стальные трубы электропроводки, тросы, на которых подвешены провода, кожухи шинопроводов, короба и лотки, арматуру железобетонных опор и проволочные оттяжки любых опор, а также все другие металлоконструкции, связанные с установкой электрооборудования.
ПУЭ не требуют заземлять или занулять что-либо в помещениях без повышенной опасности поражения электрическим током, в частности в жилых и общественных помещениях с деревянными или пластиковыми полами, если номинальное напряжение электрооборудования 220 В и ниже. Зануление здесь только повысило бы опасность при случайном прикосновении одновременно к токоведущим частям и к зануленным, т. е. к
связанному с землей корпусу электрооборудования. Не требуется также занулять в кухнях, ванных комнатах и туалетах квартир металлические корпуса стационарно установленного осветительного электрооборудования и переносных электроприборов и машин мощностью до 1,3 кВт (стиральные и швейные машины, холодильники, утюги и т. п.).
40.Расчет защитного заземления.
41. Эксплуатация заземления и зануления. Электробезопасность при противопожарном обследовании электроустановок.
Под электробезопасностью понимается система организационных и технических мероприятий по защите человека от действия электрического тока, электрической дуги, статического электричества, электромагнитного поля.
42.Молния и ее характеристики. Пожаро- и взрывоопасность воздействия молнии.
большой объемный положительный заряд. Внутри облака образуется электрическое поле с напряженностью Еоб между распределенными разнополярными зарядами. Нижняя часть индуцирует на поверхности земли положительный заряд с плотностью δ+ и появляется местное грозовое электрическое поле с напряженностью Ег, достигающей иногда 100-200 кВ/м. Разряд облака на землю (рис. 8.2) имеет вид линейной молнии и начинается в большинстве случаев при высокой концентрации в нем зарядов и напряженности Ег=20-30 кВ/см у его выступающих частей. Этому благоприятствует меньшая плотность воздуха вокруг облака, чем плотность у земли.
Исследованиями в России и за рубежом выявлены условия возникновения молнии и ее характеристики. Для равнинных районов делают различие между разрядами молнии непосредственно в землю или в объекты высотой до 100 м и разрядами в высотные здания и сооружения: радио и телевизионные мачты, заводские трубы. В первом случае характерны нисходящие, а во втором – восходящие разряды (молнии). Нисходящий разряд между облаком и землей разделяется на лидерный и главный. Он обычно начинается с прорастания от облака к земле слабосветящегося канала – ступенчатого лидера движущегося прерывисто (ступенями). Длина каждой ступени около 50 м, средняя ско-
рость ее распространения составляет (2-5) 105 м/с. Сведения о восходящих молниях появились лишь в последние десятилетия, когда начались системати-
ческие наблюдения за грозопоражаемостью очень высоких сооружений,
например Останкинской телевизионной башни.
Наибольшую опасность представляет нисходящая отрицательная
молния между облаком и землей (объектом) в виде линейной молнии, с ко-
торой связано подавляющее большинство пожаров и повреждений зданий,
сооружений, линий электропередач, подстанций.
Таким образом, для молниезащиты представляет интерес только ли-
нейная, а не шаровая молния как редкое явление. Электрическими харак-
теристиками молнии являются амплитуда тока Iм (наибольшее значение
тока главного разряда первой компоненты), крутизна тока α, длина фронта
волны тока τф и длина волны тока τ
Амплитуда Iм изменяется в очень широких пределах, достигая иногда
230-250 кА. Чем больше амплитуда, тем меньше вероятность ее появления.
Крутизна α = diм/dτ характеризует скорость нарастания тока, т.е. от-
ношение приращения тока Δiм к очень малому промежутку времени Δt, и
является переменной величиной. Она меньше в начале и в конце восходя-
щей ветви тока, на которой происходит быстрое его изменение, и велика в
ее середине. Величина α всегда превышает 5 кА/мкс и может достигать
клона штрихпунктирной кривой к оси времени) на рис. 8.3. Максимальная
расчетная крутизна принимается равной 50 кА/мкс. На ниспадающей ветви
кривой ток изменяется медленней, его крутизна гораздо меньше и ее во
внимание не принимают.
Длиной фронта τф называют время от начала до конца нарастания то-
ка молнии. На этом участке изменение тока наиболее интенсивное. Вели-
чина τф первых компонент составляет 1,5–10 мкс. Чем больше амплитуда,
тем обычно больше и τф. Для последующих компонент длина фронта вол-
ны меньше примерно в 2,5 раза. За расчетную величину рекомендуется
принимать τф = 1,5 мкс.
Длиной волны принято считать время τ
в, протекающее от начала до то-
го момента, когда iм = 0,5Iм и изменяется от 20 до 100 мкс. Расчетной вели-
чиной принимают τф = 50 мкс.
Иногда кривую тока молнии идеализируют. Если интересуются про-
цессами на фронте, то считают, что после t = τф ток не изменяется и оста-
ется равным Iм. Наоборот, для анализа воздействия на ниспадающей ветви,
например теплового воздействия, пренебрегают фронтом и полагают, что
ток сразу достигает значения Iм и затем медленно спадает по закону
iм = Iмe-1/Т, где Т – некоторая постоянная величина.
43. Грозовая деятельность и грозопоражаемость зданий и сооружений. Классификация зданий и сооружений по устройству молниезащиты.
Среднегодовая продолжительность гроз в произвольном пункте на территории СССР, по утвержденным для некоторых областей СССР региональным картам продолжительности гроз, или по средним многолетним(порядка 10 лет) данным метеостанции, ближайшей от места нахождения здания или сооружения. Подсчет ожидаемого количества N поражениймолнией в год производится по формулам:
для сосредоточенных зданий и сооружений (дымовые трубы,
для зданий и сооружений прямоугольной формы
L рассматриваются ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане. Для произвольного пункта на территории СССР удельная плотность ударов молнии в землю n определяется исходя из
среднегодовой продолжительности гроз в часах следующим образом:
Тяжесть опасных последствий прямого удара молнии при ее термических, механических и электрических воздействиях, а также искрениях и перекрытиях, вызванных другими видами воздействий, зависит от конструктивно-планировочных особенностей зданий и сооружений и пожаровзрывоопасности технологического процесса. Например, производствах, постоянно связанных с наличием открытого пламени, при применении несгораемых материалов и конструкций протекание тока молнии не представляет большой опасности. Однако наличие внутри объекта взрывоопасной или пожароопасной среды создает угрозу пожара, разрушений, человеческих жертв, больших материальных убытков. При таком разнообразии конструктивных и технологических условий предъявлять одинаковые требования к молниезащите всех объектов означало бы или предусматривать чрезмерные излишества, или мириться с неизбежностью значительных убытков, вызванных последствиями поражения молнией.
I к а т е г о р и я – здания и сооружения или их части с взрывоопасными зонами классов В-I и В-II по Правилам устройства электроустановок (ПУЭ-86). В них хранятся или содержатся постоянно, либо появляются во время производственного процесса смеси газов, паров или пыли горючих веществ с воздухом или иными окислителями, способные взорваться от электрической искры.
I I к а т е г о р и я – здания и сооружения или их части, в которых имеются взрывоопасные зоны классов В-Iа, В-Iб, В-IIа согласно ПУЭ. В них взрывоопасные смеси могут появляться лишь при аварии или неисправностях в технологическом процессе. К этой категории принадлежат также наружные технологические установки и склады, содержащие взрывоопасные газы и пары, горючие и легковоспламеняющиеся жидкости (газгольдеры, цистерны и резервуары, сливно-наливные эстакады), отнесенные по ПУЭ к взрывоопасным зонам класса В-Iг.
I I I к а т е г о р и я – несколько вариантов зданий, в том числе: здания и сооружения с пожароопасными зонами классов П-I, П-II и П-IIа согласно ПУЭ; наружные технологические установки, открытые склады горючих веществ, где применяются или хранятся горючие жидкости с температурой вспышки паров выше 61 °С или твердые горючие вещества, отнесенные по ПУЭ к зоне класса П-III.
44. Молниеотводы: конструктивные типы и характеристика элементов. Аналитическая оценка параметров и графическое построение зон защиты.
Средством защиты от прямых ударов молнии служит молниеотвод –устройство, рассчитанное на непосредственный контакт с каналом молнии и отводящее ее ток в землю.
По типу молниеприемников молниеотводы делятся на стержневые,
тросовые и сеточные; по количеству и общей зоне защиты – на одиноч-
ные, двойные и многократные. Кроме того, различают молниеотводы от-
дельно стоящие, изолированные и не изолированные от защищаемого зда-
лее экономичен вариант установки стержневых или тросовых молниеприемников, в зону защиты которых входит весь объект. По этой причине укладка молниеприемной сетки рекомендуется на неметаллических кровлях с уклоном не более 1:8.
Иногда возвышающиеся элементы кровли снабжают молниеприемниками, соединенными с сеткой посредством сварки. На деревьях молниеприемником может служить выступающий конец токоотвода в виде петли на участке до 400 мм от верхней точки. Тросовый молниеприемник выполняют из стального многопроволочного и только оцинкованного троса диаметром до 7 мм (сечение не менее 35 мм2).
Токоотводы молниеотводов применяют для соединения молниеприемников с заземлителями из стали любого профиля. Их рассчитывают на пропускание полного тока молнии без нарушений и существенного перегрева. Они должны быть оцинкованы, пролужены или окрашены для предупреждения коррозии. Не рекомендуется применять многопроволочный стальной трос, если у него не оцинкована каждая нить. Наименьшее сечение токоотводов, выполненных из угловой и полосовой стали и расположенных вне сооружения на воздухе, равно 48 мм2, для расположенных внутри – 24 мм2, а круглые токоотводы должны иметь наименьший диаметр 6 мм. Токоотводами могут служить арматура железобетонных конструкций, направляющие лифтов, пожарные лестницы, водопроводные, водосточные и канализационные трубы, колонны, стенки резервуаров, электрически надежно связанные по всей длине. Соединения токоотводов, специальных и естественных, должны быть сварными (внахлест). Количество их необходимо резко ограничить. Болтовые соединения допускают только для объектов с III категорией устройства молниезащиты и тогда их не окрашивают, а лудят. С заземлителями токоотводы соединяют только сваркой, и площадь контакта во всех случаях не менее двух
Заземляющие устройства являются важнейшим элементом в ком-
плексе средств обеспечения защиты объектов от прямого удара молнии, заноса высоких потенциалов по коммуникациям и электростатической индукции. Основной частью их являются собственно заземлители, находящиеся в достаточно хорошо проводящей среде.
Заземлитель молниезащиты – один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, коммуникациях при близких разрядах молнии. Они бывают одиночными (простыми) или сложными (комбинированными). К первым относятся трубы, электроды из круглой, полосовой, угловой и листовой стали, железобетонные подножки и сваи, а сложные образуются из комбинаций простых. Одиночные делятся на сосредоточенные и протяженные. У первых потенциал практически по длине не изменяется, у вторых потенциалы начала и конца отличаются друг от друга вследствие большой длины электродов, малого их сечения, высокого удельного сопротивления материалов или высокой удельной проводимости грунта.
45.Особенности и требования к молниезащите зданий и сооружений различных категорий. Эксплуатация молниезащитных устройств.