Что такое шаг зубчатого колеса
Глава 8. зацепления зубчатые
Зацепления зубчатые относятся к передачам (подвижным соединениям) и передают движение от двигателя к исполнительным механизмам. К составным частям зубчатых передач относятся зубчатые колеса (цилиндрические, конические), червяки, рейки.
Диаметр делительной окружности d является одним из основных параметров, по которому производят расчет зубчатого колеса:
где z – число зубьев;
Модуль зацепления m – это часть диаметра делительной окружности, приходящейся на один зуб:
где t – шаг зацепления.
Диаметр окружности выступов зубьев :
Диаметр окружности впадин :
Служит для передачи вращения при параллельных осях валов.
ГОСТ 9563-60 предусматривает два ряда модулей m = 0,05…100 мм.
Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …
Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …
Служит для преобразования вращательного движения в возвратно-поступательное.
ГОСТ 9563-60 предусматривает два ряда модулей m = 0,05…100 мм.
Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …
Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …
Примечание. Ряд 1 следует предпочитать ряду 2.
Служит для передачи вращательного движения между валами со скрещивающимися осями.
ГОСТ 19672-74 устанавливает два ряда значений модулей m (мм).
Ряд 1: … 1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10 …
Ряд 2: … 1,5; 3; 3,5; 6; 7 …
Примечание. Ряд 1 следует предпочитать ряду 2.
Служит для передачи вращения при пересекающихся осях валов.
ГОСТ 9563-60 предусматривает два ряда модулей m = 0,05…100 мм.
Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …
Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …
Примечание. Ряд 1 следует предпочитать ряду 2.
Шаг зубчатого зацепления
Смотреть что такое «Шаг зубчатого зацепления» в других словарях:
Шагомер — 1) прибор для измерения шага зубчатого зацепления (См. Шаг зубчатого зацепления) (см. Зубоизмерительные приборы). 2) Прибор (в виде карманных часов) для отсчёта числа шагов, пройденных человеком … Большая советская энциклопедия
Корригирование зубчатых колёс — (от лат. corrigo исправляю, улучшаю) приём улучшения формы зубьев эвольвентного зубчатого зацепления. При нарезании зубчатых колёс исходный стандартный контур производящей рейки смещают в радиальном направлении так, что её делительная… … Большая советская энциклопедия
МОДУЛЬ — (1) числовое значение какой либо характеристики, единица меры, коэффициент, число, показатель какого либо соотношения, напр.: а) М. зубчатого зацепления отношение шага зубчатого зацепления к числу π; умножив модуль на число зубьев шестерни,… … Большая политехническая энциклопедия
Железные дороги — I I. История развития железных дорог. Ж. дорога, в том виде, в каком она существует теперь, изобретена не сразу. Три элемента, ее составляющие, рельсовый путь, перевозочные средства и двигательная сила прошли каждый отдельную стадию развития,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
ГОСТ 16531-83: Передачи зубчатые цилиндрические. Термины, определения и обозначения — Терминология ГОСТ 16531 83: Передачи зубчатые цилиндрические. Термины, определения и обозначения оригинал документа: 5.3.1. Воспринимаемое смещение Разность межосевого расстояния цилиндрической зубчатой передачи со смещением и ее делительного… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 19325-73: Передачи зубчатые конические. Термины, определения и обозначения — Терминология ГОСТ 19325 73: Передачи зубчатые конические. Термины, определения и обозначения оригинал документа: 37. Базовая плоскость конического зубчатого колеса Базовая плоскость Определения термина из разных документов … Словарь-справочник терминов нормативно-технической документации
Зубчатое колесо — Запрос «шестерня» перенаправляется сюда; см. также другие значения. Зубчатые колёса Зубчатое колесо, шестерня основная деталь зубчатой передачи в виде диска с зубьями на цилиндри … Википедия
Зубчатая передача — механизм, состоящий из колёс с зубьями, которые сцепляются между собой и передают вращательное движение, обычно преобразуя угловые скорости и крутящие моменты. З. п, разделяют по взаимному расположению осей на передачи (рис. 1):… … Большая советская энциклопедия
Зубоизмерительные приборы — средства измерения зубчатых передач. К этой группе иногда относят средства измерения зуборезного инструмента (См. Зуборезный инструмент) и средства, устанавливаемые на зубообрабатывающих станках (См. Зубообрабатывающий станок). З … Большая советская энциклопедия
Зубообрабатывающий станок — металлорежущий станок для обработки зубчатых колёс, червяков и зубчатых реек. В зависимости от применяемого инструмента (см. Зуборезный инструмент) различают зубофрезерные, зубодолбёжные, зубострогальные, зубоотделочные… … Большая советская энциклопедия
Что такое шаг зубчатого колеса
Для параметров зубчатого колеса справедливы следующие соотношения
— диаметр окружности произвольного радиуса,
— диаметр делительной окружности,
— шаг по окружности произвольного радиуса,
— шаг по делительной окружности,
В зависимости от соотношения между толщиной зуба и шириной впадины на делительной окружности зубчатые колеса делятся на:
Более подробно познакомиться с основными определениями и расчетными зависимостями можно в литературе [ 11.1 ] и в ГОСТ 16530-83.
Толщина зуба колеса по окружности произвольного радиуса .
Толщина зуба по дуге делительной окружности
Угловая толщина зуба по окружности произвольного радиуса из схемы на рис. 12.2
Подставляя в формулу угловой толщины эти зависимости, получим
Методы изготовления эвольвентных зубчатых колес .
Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:
Из вариантов изготовления по способу копирования можно отметить:
Из вариантов изготовления по способу огибания наибольшее распространение имеют:
Для сокращения номенклатуры режущего инструмента стандарт устанавливает нормативный ряд модулей и определенные соотношения между размерами элементов зуба. Эти соотношения определяются:
По ГОСТ 13755-81 значения параметров исходного контура должны быть следующими:
Исходный производящий контур отличается от исходного высотой зуба h 0 = 2.5m.
Станочным зацеплением называется зацепление, образованное заготовкой колеса и инструментом, при изготовлении зубчатого колеса на зубообрабатывающем оборудовании по способу обката. Схема станочного зацепления колеса и инструмента с производящим контуром, совпадающим с исходным производящим контуром, изображена на рис. 12.4.
Основные размеры зубчатого колеса .
Определим основные размеры эвольвентного зубчатого колеса, используя схему станочного зацепления (рис. 12.4).
Так как стночно-начальная прямая перекатывается в процессе огибания по делительной окружности без скольжения, то дуга s-s по делительной окружности колеса равна ширине впадины e-e по станочно-начальной прямой инструмента. Тогда, c учетом схемы на рис. 12.5, можно записать
Виды зубчатых колес (Классификация по величине смещения) .
В зависимости от расположения исходного производящего контура относительно заготовки зубчатого колеса, зубчатые колеса делятся на нулевые или без смещения, положительные или с положительным смещением, отрицательные или с отрицательным смещением.
Подрезание и заострение зубчатого колеса .
На рис. 12.7 изображены два эвольвентных зуба для которых
Для термобработанных зубчатых колес с высокой поверхностной прочностью зуба заострение вершины зуба является нежелательным. Термообработка зубьев (азотирова-ние, цементация, цианирование), обеспечивающая высо Рис. 12.7 кую поверхностную прочность и твердость зубьев при сохранении вязкой серцевины, осуществляется за счет насыщения поверхностных слоев углеродом. Вершины зубьев, как выступающие элементы колеса, насыщаются углеродом больше. Поэтому после закалки они становятся более твердыми и хрупкими. У заостренных зубьев появляется склонность к скалыванию зубьев на вершинах. Поэтому рекомендуется при изготовлении не допускать толщин зубьев меньших некоторых допустимых значений. То есть заостренным считается зуб у которого
При этом удобнее пользоваться относительными величинами [s a /m ]. Обычно принимают следующие допустимые значения
улучшение, нормализация [s a /m ] = 0.2;
цианирование, азотирование [s a /m ] = 0.25. 0.3;
цементация [s a /m ] = 0.35. 0.4.
Подрезание эвольвентных зубьев в станочном зацеплении
Модуль зубьев зубчатого колеса
Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня». За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.
Что такое модуль зубчатого колеса
Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров
Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.
В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.
Для расчета этого параметра применяют следующие формулы:
Параметры зубчатых колес
Модуль зубчатого колеса можно рассчитать и следующим образом:
где h — высота зубца.
где De — диаметр окружности выступов,а z — число зубьев.
Что же такое модуль шестерни?
это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.
Формула расчета параметров прямозубой передачи
Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.
Расчет модуля зубчатого колеса
Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:
проведя преобразование, получим:
Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.
размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
выполнив преобразование, находим:
Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным
где h’- высота головки.
Высоту головки приравнивают к m:
Проведя математические преобразования с подстановкой, получим:
Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:
где h“- высота ножки зубца.
Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:
Устройство зубчатого колеса
Выполнив подстановку в правой части равенства, имеем:
что соответствует формуле:
и если выполнить подстановку, то получим:
Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
Следующий важный размер, толщину зубца s принимают приблизительно равной:
Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины
Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:
Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.
Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.
Исходные данные и замеры
На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.
Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.
Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.
Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.
Результаты расчетов
Для более крупных потребуются измерения и вычисления.
Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:
Последовательность действий следующая:
Зубец колеса и его параметры
Данный метод подходит как для прямозубых колес, так и для косозубых.
Расчет параметров колеса и шестерни косозубой передачи
Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.
Что такое шаг зубчатого колеса?
Что такое модуль передачи?
Модуль зубчатой передачи – это число в π раз меньшее делительного окружного шага p
С целью обеспечения взаимозаменяемости зубчатых колес и унификации зуборезного инструмента значения модулей стандартизированы.
Что такое шаг зубчатого колеса?
Окружным шагом зубьев p называется расстояние между одноименными сторонами двух соседних зубьев, измеренное по дуге окружности (рис. 2.2).
Рис.2.2 Окружной шаг зубчатого колеса
Что такое головка зуба, ножка зуба и как выражается их высота через модуль?
Часть зуба, расположенная между окружностью вершин зубьев и делительной окружностью, называют головкой зуба, ее высоту обозначают hа.
Часть зуба, расположенную между окружностью впадин и делительной окружностью, называют ножкой зуба, ее высоту обозначают hf.
Для нулевых передач (передач, у которых суммарный коэффициент смещения х∑ = 0, ha = m, hf = 1,25m ).
Как называется прямая линия, на которой происходит контакт зубьев при передаче движения?
Эта прямая называется активным участком ab линии зацепления АВ, в свою очередь являющейся участком производящей прямой MN. Положение производящей прямой MN определяется углом зацепления dw, образуемым этой прямой и перпендикуляром к линии центров в полюсе зацепления Р. Последовательность построения зубчатого зацепления показана на рис. 2.4.1-2.4.3
Что такое коэффициент перекрытия, допустимое минимальное значение его величины?
Коэффициентом торцевого перекрытия εα называется отношение угла поворота зуба ab в процессе зацепления к угловому шагу:
где pbt – основной окружной шаг (pbt = 2π/z).
В прямозубых передачах должно выполняться условие εα ≥ 1,1.
В косозубых передачах вводится понятие коэффициента осевого перекрытия
Суммарный коэффициент перекрытия εv = εα + εβ
Какие условия прочности необходимо выполнить, чтобы при работе передачи не было контактного разрушения зубьев?
В рационально сконструированной передаче отклонение σH от допускаемого контактного напряжения σHP должно лежать в пределах от 15% недогрузки до 5% перегрузки.
Какие условия прочности необходимо обеспечить при расчете, чтобы при работе передачи не происходило поломки зубьев?
Расчет подшипников и шпонок
4.1 Что является критерием работоспособности подшипников качения?
Критерием работоспособности подшипников качения является усталостная прочность, которая оценивается как долговечность. Долговечность определяется с учетом базовой динамической грузоподъемности подшипника.
4.2 Какая минимальная долговечность допускается для подшипников качения, устанавливаемых в зубчатых редукторах?
Для подшипников качения, устанавливаемых в зубчатых редукторах, долговечность должна быть не менее 12500 часов.
4.3 Как рассчитывается долговечность подшипников? В каких единицах она выражается?
Долговечность (базовый расчетный ресурс) подшипника может быть выражена в миллионах оборотов L или в часах Lh :
,
4.4 Что такое динамическая грузоподъемность подшипников? Как она определяется при расчете подшипников?
Одним из основных видов расчета подшипников качения является расчет на долговечность по динамической грузоподъемности для предотвращения усталостного выкрашивания. При расчете подшипника на долговечность учитывают его базовую динамическую грузоподъемность С, которая соответствует нагрузке, выдерживаемой не менее 90% подвергнутых испытанию подшипников без появления признаков усталости в течении 1 млн. оборотов. Эта нагрузка приводится в ГОСТе и зависит от выбранного типоразмера подшипника.
4.5 Что такое эквивалентная нагрузка подшипников? Как она рассчитывается?
Эквивалентная динамическая нагрузка – это постоянная нагрузка, которая при приложении ее к подшипнику с вращающимся внутренним и неподвижным внешним кольцами обеспечивает такую же долговечность, какую имеет подшипник при действительных условиях нагружения.
Для определения эквивалентной динамической нагрузки используют зависимость P=(XVFr+YFa)KБ KT,
4.6 Как находятся коэффициенты нагрузки Х, У и величина Fa при расчете радиальных шариковых подшипников?
Коэффициенты нагрузки Х и У определяются в зависимости от отношения и параметра осевого нагружения ℮.
Если
℮, то осевая нагрузка не оказывает влияния на долговечность этих подшипников и следует принять Х = 1, У = 0.
Осевая нагрузка Fa равна внешней осевой силе, действующей на вал.
4.7 Как находятся коэффициенты Х, У и величина Fa при расчете радиально-упорных подшипников?
Коэффициенты нагрузки Х и У в однорядных радиально-упорных подшипниках находят таким же способом, как и в радиальных подшипниках (см. п.4.6 настоящего раздела).
При нагружении радиально-упорного подшипника радиальной нагрузкой Fri возникает осевая составляющая , определяемая по формулам
— для шариковых подшипников;
— для роликовых конических подшипников,
При определении осевой силы необходимо учитывать соотношение осевых составляющих и внешней осевой силы, действующей на вал.
4.8 Классификация подшипников качения.
Подшипники качения классифицирую по следующим признакам:
— по форме тел качения;
— по направлению воспринимаемой нагрузки;
— по числу рядов тел качения;
— по классам точности,
— по допустимому углу перекоса колес.
4.9 Смазка подшипников качения
Смазывание подшипников применяют в целях защиты от коррозии, для снижения трения, уменьшения износа, отвода тепла и продуктов износа от трущихся поверхностей, снижения шума и вибраций.
Для смазывания подшипников применяют жидкие и пластичные смазки. Жидкие смазки применяют при окружных скоростях более (1,5…2) м/с за счет разбрызгивания масла колесами. Пластичные смазки применяют при малых окружных скоростях.
4.10 Что такое статическая грузоподъемность подшипника?
4.11 Какой подшипник имеет больший наружный диаметр: 308 или 408?
Подшипник 408 относится к тяжелой серии по грузоподъемности, следовательно, он имеет большие габаритные размеры, и соответственно, больший наружный диаметр.
4.12 Как определить наиболее нагруженный подшипник?
Наиболее нагруженный подшипник определяется по результатам расчета полных давлений в опорах
и
,
где — реакции опор в горизонтальной плоскости,
— реакции опор в вертикальной плоскости.
Считаем также, что наиболее нагруженная опора воспринимает и осевую нагрузку.
4.13 Что является критерием работоспособности призматических шпоночных соединений?
Критерием работоспособности является прочность по напряжениям смятия σсм или по напряжениям среза τср.
Для стандартных шпонок достаточно проверять условие прочности только на смятие.
4.14 В каких случаях требуется выполнять расчет шпоночных соединений по напряжениям среза?
Этот расчет необходим, если конструируются нестандартные шпоночные соединения.
4.15 С какой целью при изготовлении шпоночных соединений обеспечивается зазор между шпонкой и торцевой поверхностью шпоночного паза ступицы?
У призматической шпонки боковые поверхности являются рабочими, поэтому при сборке шпоночного соединения в радиальном направлении предусматривается зазор, чтобы гарантированно обеспечить передачу крутящего момента боковыми поверхностями шпонки.
4.16 Что следует предпринять, если не выполняется условие прочности при расчете шпонок?
Если при проверке шпонки напряжение смятия окажется ниже допустимого [σсм ], то можно установить две шпонки или выбрать шлицевое соединение.
4.17. Что такое напряженное соединение?
Это соединение деталей, в котором напряжения появляются на этапе сборки до приложения рабочей нагрузки. Например, посадка с натягом подшипников на вал.
4.18 Что такое ненапряженное соединение?
Это соединение деталей, в котором напряжения появляются только после приложения внешних сил.
4.19 Могут ли ненапряженные шпоночные соединения обеспечивать осевую фиксацию колес?
Не могут. В этом случае осевую фиксацию колес приходиться обеспечивать конструктивными мерами, используя буртики на валу, дистанционные втулки, разрезные кольца и тому подобные элементы.
4.20 С какой целью используются шпоночные соединения? Какие напряжения возникают в шпонке при нагрузке?
Шпонки служат для передачи крутящего момента к установленным на нем деталям (шкивам, зубчатым и червячным колеса, муфтам и тому подобное) или, наоборот, от этих деталей к валам.
При передаче крутящего момента шпонка работает на смятие и на срез
(рис. 4.20).
Рис. 4.20 Силы, действующие на шпонку
Конструкция редуктора
5.1 Когда можно выполнять корпус редуктора без грузозахватных устройств?
Корпус редуктора изготавливается без грузозахватных приспособлений ( проушины, рым-болты и крюки ), когда масса редуктора в сборе не превышает 20 кг.
5.2 С какой целью выполняется отверстие в ручке смотровой крышки?
Через отверстие в ручке смотровой крышки выходит воздух, который расширяется от выделения тепла в зацеплении. Если для воздуха не предусмотрено отверстие для выхода, то он пробивается через стыки и уплотнения, что способствует вытеканию смазки наружу.
Если редуктор работает в условия повышенной загрязненности, то необходимо проектировать пробку-отдушину с фильтром, так как при охлаждении редуктора во время остановки загрязненный воздух всасывается внутрь.
5.3 Как по чертежу редуктора можно определить его передаточное число?
Для этого нужно измерить диаметры начальных окружностей колеса и шестерни, получить частное от их деления и округлить полученный результат до стандартного значения.
5.4 Как определить передаточное число редуктора, не разбирая его?
Нужно провернуть быстроходный вал такое число раз, чтобы получить один оборот тихоходного вала. Это число оборотов быстроходного вала, округленное до стандартного значения, и есть передаточное число редуктора.
5.5 Как определить какой из выходных валов является быстроходным, а какой тихоходным?
Быстроходный вал редуктора имеет меньший диаметр по сравнению с тихоходным, так как последний передает больший крутящий момент.
5.6. С какой целью устанавливаются прокладки между нажимными крышками подшипниковых узлов и корпусом? Как эта цель достигается при использовании врезных крышек?
Прокладки между нажимными крышками подшипниковых узлов и корпусом редуктора устанавливаются для регулировки теплового зазора и уплотнения стыка крышки с корпусом.
При использовании врезных крышек эта регулировка осуществляется с помощью распорных втулок или нажимного винта со стороны глухой крышки через шайбу.
5.7. Как уплотняется фланцевый разъем корпуса и крышки редуктора?
При сборке стыковые поверхности фланцев корпуса и крышки редуктора покрываются пастой «Герметик», либо лаком.
5.8 Как при сборке редуктора учитывается некоторое удлинение вала из-за нагрева редуктора при работе?
Чтобы избежать температурных деформаций вала при нагреве, необходимо одну из опор сделать плавающей, или предусмотреть тепловой зазор между крышкой подшипникового узла и подшипником.
5.9 С какой целью в конструкции редуктора используются штифты?
Корпус и крышку редуктора фиксируют относительно друг друга штифтами, устанавливаемыми без зазора до расточки отверстий под подшипники.
Штифты позволяют многократно разбирать и собирать редуктор без смещения осей расточек под подшипники.
5.10 Из каких деталей состоит система смазки в редукторе?
Система смазки в общем случае состоит из отверстия для заливки (это отверстие закрывается смотровой крышкой с ручкой-отдушиной), масловыпускного отверстия с пробкой в нижней части корпуса, а также маслоизмерительного устройства для контроля уровня смазки в редукторе.
В зависимости от величины окружной скорости зубчатых колес также применяются маслоотражательные или мазеудерживающие кольца, которые тоже относятся к системе смазки.
5.11 Изобразить мазеудерживающее кольцо. Когда оно используется?
Конструкция мазеудерживающего кольца представлена на рис. 5.11.
Используется оно, когда окружная скорость зубчатых колес менее 2 м/с и подшипники смазываются пластичной смазкой.
Рис. 5.11 Мазеудерживающее кольцо
5.12 Изобразить конструкцию маслоотражательного кольца. Когда оно используется?
Конструкция маслоотражательного кольца приведена на рис. 5.12. Используется оно, когда окружная скорость зубчатых колес более 2 м/с, а диаметр выступов косозубой или шевронной шестерни меньше наружного диаметра подшипника на быстроходном валу.
Рис. 5.12 Маслоотражательное кольцо
5.13 Какие размеры проставляются на сборочном чертеже?
На сборочном чертеже проставляются габаритные, установочные, присоединительные, посадочные и справочные размеры. Кроме того, проставляются межосевые расстояния с допусками.
5.14 Когда на сборочном чертеже проставляются посадки, а когда допуски?
Посадки на сборочном чертеже проставляются, когда на чертеже изображены сопрягаемые детали, например, валы и подшипники, тихоходный вал и колесо.
Допуски проставляются на деталях, если на сборочном чертеже нет сопрягаемой детали. Например, на выходных участках валов указываются только допуски на диаметр (рис. 5.14).
Рис.5.14 Допуски и посадки на сборочном чертеже
5.15 Какие параметры редуктора регламентированы стандартом?
Стандартом регламентируются передаточные числа, межосевые расстояния между валами редуктора и коэффициент ширины колеса.
5.16 Что такое плавающий вал?
Плавающим называют вал, у которого обе опоры являются шарнирно-подвижными (плавающими). Такую конструкцию имеет один из валов шевронной зубчатой передачи, обычно быстроходный (рис.5.16). В этом случае вал имеет некоторое возвратно-поступательное осевое смещение, которое позволяет компенсировать разницу в осевых усилиях на полушевронах и не передавать эту нагрузку на подшипники.
5.17 Как определяются уровни смазки при проектировании и в процессе эксплуатации редуктора?
Глубина погружения зубчатого колеса в масляную ванну должна быть не меньше высоты зуба. Максимальная глубина погружения hmax зависит от окружной скорости в зацеплении: при V = 5…7 м/с принимаем hmax = 4,5m ;