что такое ротор в физике простое объяснение
Значение слова «ротор»
[От лат. rotare — вращать]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Ротор — то же, что вихрь векторного поля, то есть вектор, характеризующий вращательное движение в данной точке векторного поля.
Ротор многогранника — выпуклое тело способное свободно вращаться в многограннике постоянно касаясь всех его граней; см. тело постоянной ширины и фигура постоянной ширины.
Синдром Ротора — одна из четырёх форм синдрома гипербилирубинемии.
Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела (например, ротор двигателя Ванкеля) или отдающие её рабочему телу (например, ротор роторного насоса). Ротор двигателей связан с ведущим валом, ротор рабочих машин — с приводным валом. Ротор выполняется в виде барабанов, дисков, колёс.
Ротор — вращающаяся часть паровой турбины, компрессора, гидронасоса, гидромотора и т. д.
Буровой ротор — механизм, являющийся многофункциональным оборудованием буровой установки, который предназначен для вращения бурильных труб и поддержания колонны бурильных или обсадных труб при свинчивании и развинчивании в процессе спуско-подъемных операций, при поисковом бурении и капитальном ремонте скважин. Привод — цепной или карданный. Роторное бурение.
Ротор — устройство управления поворотом антенны в направлении приёма или передачи сигнала.
Ротор — любое вращающееся тело в теории балансировки.
Ротор — система вентилятора.
Ротор — вращающаяся часть электрической машины (генератора или двигателя переменного тока внутри неподвижной части — статора). Ротор асинхронной электромашины обычно представляет собой собранное из листовой электротехнической стали цилиндрическое тело с пазами для размещения обмотки. Ротор в электромашинах постоянного тока называется якорем.
Ротор — автоматически управляемая машина (транспортное устройство, прибор), в которой заготовки двигаются вместе с обрабатывающими их орудиями по дугам окружности. Роторная печь. Роторный экскаватор. Роторная линия (комплекс роторов).
Ротор — несущий винт вертолёта.
Ротор Дарье — составная часть вертикально-осевого ветрогенератора, крыльчатка которого представляет собой двояковыпуклые лопасти, закреплённые при помощи штанг на вертикально вращающейся оси.
Ротор Савониуса — составная часть вертикально-осевого ветрогенератора в виде двух смещенных относительно друг друга полуцилиндрических лопастей и небольшого (10—15 % от диаметра лопасти) перекрытия, которые образуют параллельно оси вращения ротора.
Ротор Флеттнера — «парусная мачта» или заменяющий паруса ротор (на судне их устанавливается несколько), с помощью которого судно приводится в движение посредством ветра, благодаря эффекту Магнуса. Роторное судно Флеттнера.
Ротор, Артуро (1907—1988) — филиппинский врач, государственный служащий, музыкант и писатель.
РОТОР — Сетевой конкурс «Российский Онлайн ТОР».
НПО «Ротор» — предприятие — разработчик и производитель гироскопических приборов для ракетно-космической техники (СССР, Россия).
Приборостроительный завод «Ротор» — промышленное предприятие в Барнауле.
«Ротор» — футбольный клуб из Волгограда.
«Ротор-Волгоград» — пляжный футбольный клуб из Волгограда.
«Ротор» — тренировочная база в Волгограде.
Целями являются выявление значимых проектов и персоналий Рунета и определение тенденций его развития.
Члены жюри РОТОРа, подписчики дискуссионного мейл-листа «ЕЖЕ», сами являются значимыми и опытными интернет-деятелями, авторами различных сетевых проектов, что придаёт конкурсу авторитетность.
РО’ТОР, а, м. [от латин. roto — вращаю] (тех.). 1. Вращающаяся часть в электромашинах и турбинах, в противоп. статору. 2. Устройство на судах в виде вертикально поставленных труб, служащее для приведения в движение судна силой ветра (мор.).
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
ро́тор
1. техн. вращающаяся деталь ◆ В порядке эксперимента городские власти решили оснастить московских дворников мотоблоками со щетками, поливалками и снегоуборочными роторами. На дворниках станут ставить эксперименты, «2002» // «Вечерняя Москва» (цитата из НКРЯ) ◆ Дело в том, что основной рабочий орган экскаватора ― ротор с насаженными на него ковшами, ― преодолевая огромное сопротивление грунта, может при этом смещаться по оси, что и приводит к искажениям профиля канала. Ромэн Яров, «Глубокий след степного корабля», 1976 г. // «Техника — молодежи» (цитата из НКРЯ)
2. матем. операция над векторным полем ◆ Величины потоков, циркуляции, дивергенции и ротора были рассчитаны нами численными методами. Сергей Паничев и др, «Модель пространства состояний в химии», 2000 г. // «Российский химический журнал» (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: забулькать — это что-то нейтральное, положительное или отрицательное?
Ротор (вектор)
Ро́тор, или вихрь — векторный дифференциальный оператор над векторным полем. Показывает, насколько и в каком направлении закручено поле в каждой точке. Ротор поля F обозначается символом rot F (в русскоязычной литературе) или curl F (в англоязычной литературе), а также где
— векторный дифференциальный оператор набла.
Содержание
Математическое определение
Ротор векторного поля — вектор, проекция которого на каждое направление равна пределу отношения циркуляции векторного поля по контуру L плоской площадки ΔS, перпендикулярной к этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:
.
Нормаль к площадке направлена так, чтобы при вычислении циркуляции обход по контуру L совершался против часовой стрелки.
В трёхмерной декартовой системе координат вычисляется следующим образом:
Для удобства запоминания можно условно представлять ротор как векторное произведение:
где i, j и k — единичные орты для осей x, y и z соответственно.
Векторное поле, ротор которого равен нулю в любой точке, называется потенциальным (безвихревым).
Физическая интерпретация
По теореме Коши-Гельмгольца распределение скоростей сплошной среды вблизи точки О задаётся уравнением
где — вектор углового вращения элемента среды в точке О, а
— квадратичная форма от координат — потенциал деформации элемента среды.
Таким образом, движение сплошной среды вблизи точки О складывается из поступательного движения (вектор ), вращательного движения (вектор
) и потенциального движения — деформации (вектор
). Применяя к формуле Коши—Гельмгольца операцию ротора, получим, что в точке О справедливо равенство
и, следовательно, можно заключить, что когда речь идет о векторном поле, являющемся полем скоростей некоторой среды, ротор этого векторного поля в заданной точке равен удвоенному вектору углового вращения элемента среды с центром в этой точке.
Например, если в качестве векторного поля взять поле скоростей ветра на Земле, то в северном полушарии для антициклона, вращающегося по часовой стрелке, ротор будет направлен вниз, а для циклона, вращающегося против часовой стрелки — вверх. В тех местах, где ветры дуют прямолинейно и с одинаковой скоростью, ротор будет равен нулю (у неоднородного прямолинейного течения ротор ненулевой).
Основные свойства
Следующие свойства могут быть получены из обычных правил дифференцирования.
для любых векторных полей F и G и для всех вещественных чисел a и b.
При этом верно и обратное: если поле F бездивергентно, оно есть поле вихря некоторого поля G:
Верно и обратное: если поле безвихревое, то оно потенциально:
для некоторого скалярного поля
Ротор в ортогональных криволинейных координатах
Примеры
Простое векторное поле
Рассмотрим векторное поле, линейно зависящее от координат x и y:
.
Очевидно, что поле закручено. Если мы поместим колесо с лопастями в любой области поля, мы увидим, что оно начнет вращаться по направлению часовой стрелки. Используя правило правой руки, можно ожидать ввинчивание поля в страницу. Для правой системы координат направление в страницу будет означать отрицательное направление по оси z.
Как и предположили, направление совпало с отрицательным направлением оси z. В данном случае ротор является константой, так как он независим от координаты. Количество вращения в приведенном выше векторном поле одно и то же в любой точке (x,y). График ротора F не слишком интересен:
Более сложный пример
Теперь рассмотрим несколько более сложное векторное поле:
.
Три общих примера
Рассмотрим пример ∇ × [ v × F ]. Используя прямоугольную систему координат, можно показать, что
Если v и ∇ поменять местами:
что является фейнмановской записью с нижним индексом ∇F, что значит, что градиент с индексом F относится только к F.
Другой пример ∇ × [ ∇ × F ]. Используя прямоугольную систему координат, можно показать, что:
что можно считать частным случаем первого примера с подстановкой v → ∇.
Поясняющие примеры
Примечания
См. также
Полезное
Смотреть что такое «Ротор (вектор)» в других словарях:
РОТОР — (от лат. roto вращаю) (вихрь) одна из осн. операций векторногоанализа, сопоставляющая векторному полю а(r )др. векторное полеrot а (используются также обозначения curl а). Если точка r задана своими декартовыми координатами, а вектор а своими… … Физическая энциклопедия
Ротор (математика) — У этого термина существуют и другие значения, см. Ротор. Ротор, или вихрь векторный дифференциальный оператор над векторным полем. Обозначается (в русскоязычной[1] литературе) или (в англоязычной литературе), а также как векторное умножение … Википедия
Ротор (матем.) — Ротор, или вихрь векторный дифференциальный оператор над векторным полем. Показывает, насколько и в каком направлении закручено поле в каждой точке. Ротор поля F обозначается символом rot F (в русскоязычной литературе) или curl F (в англоязычной… … Википедия
Ротор векторного поля — Ротор, или вихрь векторный дифференциальный оператор над векторным полем. Показывает, насколько и в каком направлении закручено поле в каждой точке. Ротор поля F обозначается символом rot F (в русскоязычной литературе) или curl F (в англоязычной… … Википедия
Ротор поля — Ротор, или вихрь векторный дифференциальный оператор над векторным полем. Показывает, насколько и в каком направлении закручено поле в каждой точке. Ротор поля F обозначается символом rot F (в русскоязычной литературе) или curl F (в англоязычной… … Википедия
ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера
Ротор — Роторный экскаватор как экспонат в бывшем угольном карьере «стальном городе» Феррополис (Германия), превращенном в музей под открытым небом Ротор от лат. roto ) вращаться В математике: Ротор то же, что вихрь векторного поля, то… … Википедия
Ротор Дарье — У этого термина существуют и другие значения, см. Ротор. Ротор Дарье, турбина Дарье (Darrieus rotor) тип турбины низкого давления, ось вращения которой перпендикулярна потоку жидкой или газовой среды. Предложена в 1931 году французским… … Википедия
ротор — (лат. rotare вращать) 1) вращающаяся часть электрической машины (генератора или двигателя) внутри неподвижной части статора; 2) вращающаяся часть паровой турбины, компрессора, гидронасоса, гидромотора и т. д.; 3) несущий винт вертолета; 4) мат.… … Словарь иностранных слов русского языка
ротор — а, ч. 1) спец.Обертова частина машин, за допомогою якої енергія одного виду перетворюється в енергію іншого виду. 2) Гвинт вертольота. 3) мат. Вектор, який характеризує обертовий рух у даній точці векторного поля … Український тлумачний словник
Ротор и его основные свойства
Определение ротора векторного поля:
Ротором или вихрем векторного поля называется вектор с проекциями
Основные свойства ротора:
— это векторная величина, которая является дифференциальной (т.е. точечной) характеристикой векторного поля
.
— свойство линейности.
Ротор произведения скалярной и векторной ункции вычисляется по формуле:
Физический смысл ротора
Некоторое физическое истолкование понятия ротора можно получить, если рассматривать векторное поле линейных скоростей твердого тела (материальной точки M), вращающегося вокруг оси
с постоянной угловой скоростью
.
Из физики известно, что , где
— это угловая скорость вращения,
— это радиус вектор точки М.
то есть поле линейных скоростей тела, вращающегося вокруг неподвижной оси есть плоское векторное поле.
Вычислим его ротор равен:
то есть
Следовательно, ротор этого поля направлен параллельно оси вращения, его модуль равен удвоенной угловой скорости вращения. Таким образом,
характеризует вращательную способность поля
, наличие у этого поля “закрученных” векторных линий или “вихрей”.
В технической литературе ротор векторного поля часто называют вихрем этого поля.
Примеры 2 (вычисление ротора векторного поля)
Вычислить ротор радиус-вектора точки
Составляем формулу (4) для и делаем вычисления:
,
,
векторное поле не обладает вращательной способностью.
Вычислить , если
Записываем проекции данного векторного поля:
,
и по формуле (4) получаем, что
Из рассмотренного примера следует, что любое векторное поле сопровождается другим векторным полем
его ротора.
Если учесть, что потоку можно приписать алгебраический знак, то нет необходимости учитывать входящий и исходящий потоки по отдельности, всё будет автоматически учтено при суммировании с учетом знака. Поэтому можно дать более короткое определение дивергенции:
Оператор дивергенции, применённый к полю, обозначают как
F или
Определение дивергенции выглядит так:
где — поток векторного поля F через сферическую поверхность площадью S, ограничивающую объём V. Ещё более общим, а потому удобным в применении, является определение, когда форма области с поверхностью S и объёмом V допускается любой. Единственным требованием является её нахождение внутри сферы радиусом, стремящимся к нулю (то есть чтобы вся поверхность находилась в бесконечно малой окрестности данной точки, что нужно, чтобы дивергенция была локальной операцией и для чего очевидно недостаточно стремления к нулю площади поверхности и объема ее внутренности).
В обоих случаях подразумевается, что:
Это определение не привязано к определённым координатам, например к декартовым, что может представлять дополнительное удобство в определённых случаях.
На символе интеграла часто рисуют окружность, чтобы подчеркнуть, что кривая C замкнута.
Доказательство:
Для кривой C, ограничивающей область D зададим направление обхода по часовой стрелке. Тогда
Заметим, что оба полученных интеграла можно заменить криволинейными интегралами:
Криволинейные интегралы по и
будут равны нулю, так как
Заменим в (1) интегралы согласно (2) и (3), а также прибавим (4) и (5), равные нулю и поэтому не влияющие на значение выражения:
Так как обход по часовой стрелке при правой ориентации плоскости является отрицательным направлением, то сумма интегралов в правой части является криволинейным интегралом по замкнутой кривой C в отрицательном направлении:
Аналогично доказывается формула:
если в качестве области D взять область, правильную в направлении OX.
Складывая (6) и (7), получим:
Если бы в электростатических задачах мы всегда имели дело с дискретным или непрерывным распределением заряда без всяких граничных поверхностей, то общее решение для скалярного потенциала
было бы самой удобной и непосредственной формой решения таких задач и не нужны были бы ни уравнение Лапласа, ни уравнение Пуассона. Однако в действительности в целом ряде, если не в большинстве, задач электростатики мы имеем дело с конечными областями пространства (содержащими или не содержащими заряд), на граничных поверхностях которых заданы определенные граничные («краевые») условия.
Эти граничные условия могут быть заменены некоторым соответственно подобранным распределением зарядов вне рассматриваемой области (в частности, в бесконечности), однако приведенное выше соотношение в этом случае уже непригодно для расчета потенциала, за исключением некоторых частных случаев (например, в методе изображений).
Для рассмотрения задач с граничными условиями необходимо расширить используемый нами математический аппарат, а именно вывести так называемые формулы, или теоремы Грина (1824 г.). Они получаются непосредственно из теоремы о дивергенции
которая справедлива для любого векторного поля А, определенного в объёме V, ограниченном замкнутой поверхностью S. Пусть где
и
— произвольные дважды непрерывнодифференцируемые скалярные функции.
Где нормальная производная на поверхности S (по направлению внешней нормали по отношению к объёму V). Подставляя (1) и (2) в теорему о дивергенции, мы придем к первой формуле Грина
Напишем такую же формулу, поменяв в ней местами и
и вычтем её из (3). Тогда члены с произведением
обратятся и мы получим вторую формулу Грина, называемую иначе теоремой Грина:
В физике и математике теорема Грина дает соотношение между линейным интегралом простой ограниченной кривой С и двойным интегралом по плоской поверхности D ограниченной кривой С. И в общем виде записывается следующим образом.
Третье уравнение Грина получается из второго уравнения путем замены и замечания о том, что
в R ³.
Если дважды дифференцируема на U.
если x ∈ Int U,
если x ∈ ∂U и плоскость касания только в x.
Формула Стокса устанавливает связь между поверхностным и криволинейным интегралами, а также обобщает формулу Грина а пространственный случай. Т: Пусть функции P(x,y,z), Q(x,y,z), R(x,y,z) непрерывны вместе со своими частными производными на гладкой ориентированной поверхности G, ограниченной гладкой замкнутой кривой L. Тогда
Эта формула называется формулой Стокса.
Если сторона поверхности выбрана, то направление обхода контура L берется положительным, т.е. таким, что при обходе контура по выбранной стороне поверхности:
Из формулы Стокса следует, что если
то криволинейный интеграл по любой пространственной замкнутой кривой L равен нулю:
u(x,y,z): Pdx + Qdy + Rdz = du,
Заключение
Для того что бы сделать вывод о проделанной работе обратимся к задачам, которые были поставлены в введении.
Итак, примерами векторных полей служат силовое поле (поле тяготения, электрическое и электромагнитное поля) и поле скоростей текущей жидкости. Векторное поле задано, если в каждой точке Р поля указан соответствующий этой точке вектор А(Р).
Дивергенцией, или расходимостью, векторного поля А(Р) в точке Р называется предел отношения потока вектора через поверхность, окружающую точку Р, к объему, ограниченному этой поверхностью, при условии, что вся поверхность стягивается в точку Р.
Циркуляцией вектора А(Р) вдоль замкнутого контура L называется криволинейный интеграл по этому контуру от скалярного произведения вектора А(Р) на вектор dS касательной к контуру.
Литература
1. М.А. Красносельский, А.И. Перов, А.И. Поволоцкий, П.П. Зайбеко, «Векторные поля на плоскости» М.,Государственное издательство физико-математической литературы 1963 г.
2. Мышкис «Лекции по высшей математике».
3. Данко П.Е., Попов А.Г., Кожевников Т.Я., «Высшая математика в упражнениях и задачах» М., Выс.школа 1980 г.
4. Красносельский М.А. «Топологические методы в теории нелинейных интегральных уравнений.», М.: Гостехиздат, 1956 г.