что такое резистивная нагрузка примеры

Резистивная, реактивная и резистивно-реактивная нагрузка

Активная, реактивная и полная мощности

Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Реактивная мощность в математических выражениях обозначается прописной буквой Q. Фактическое количество используемой или рассеиваемой в цепи мощности называется активной мощностью и измеряется в ваттах (обозначается, как обычно, прописной буквой P). Комбинация реактивной и активной мощностей называется полной мощностью и является произведением напряжения и тока цепи без учёта угла сдвига фаз. Полная мощность измеряется в вольт-амперах (ВА) и обозначается прописной буквой S.

Как правило, величина активной мощности определяется сопротивлением рассеивающих ее элементов цепи, обычно резисторов (R). Реактивная мощность определяется величиной реактивного сопротивления (X). Полная мощность определяется полным сопротивлением цепи (Z). Поскольку при определении мощности мы имеем дело со скалярными величинами, любые исходные комплексные величины (напряжение, ток и полное сопротивление) должны быть представлены в показательной форме, а не в виде действительных или мнимых составляющих. К примеру, при определении активной мощности по величинам тока и сопротивления необходимо использовать величину тока в полярной системе координат, а не действительную или мнимую часть. При определении полной мощности по напряжению и полному сопротивлению обе эти комплексные величины должны быть представлены в полярной системе координат для применения скалярной арифметики.

Имеется несколько выражений, связывающих три типа мощности со значениями активного, реактивного и полного сопротивления (во всех случаях используются скалярные величины).

P – активная мощность P = I 2 R P = E 2 /R

Единицей измерения является ватт

Q – реактивная мощность Q = I 2 X Q = E 2 /X

Единицей измерения является вольт-ампер реактивный (вар)

S – полная мощность S = I 2 Z S = E 2 /Z S = IE

Единицей измерения является вольт-ампер (ВА)

Обратите внимание, что для определения активной и реактивной мощности имеются два выражения. Для определения полной мощности есть три выражения, P = IE используется только для этой цели. Изучите схемы, приведённые ниже, и посмотрите, как определяются эти три типа мощности при резистивной нагрузке, при реактивной нагрузке и при резистивно-реактивной нагрузке (см. рисунки ниже).

Резистивная нагрузка

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Активная мощность P = I 2 R = 240 Вт

Реактивная мощность Q = I 2 X = 0 вар

Полная мощность S = I 2 Z = 240 ВА

Активная мощность, реактивная мощность и полная мощность для чисто резистивной нагрузки

Реактивная нагрузка

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Активная мощность P = I 2 R = 0 Вт

Реактивная мощность Q = I 2 X = 238,73 вар

Полная мощность S = I 2 Z = 238,73 ВА

Активная мощность, реактивная мощность и полная мощность для чисто реактивной нагрузки

Резистивно-реактивная нагрузка

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Активная мощность P = I 2 R = 119,365 Вт

Реактивная мощность Q = I 2 X = 119,998 вар

Полная мощность S = I 2 Z = 169,256 ВА

Активная мощность, реактивная мощность и полная мощность для резистивно-реактивной нагрузки

Треугольник мощностей, связывающий полную мощность с активной и реактивной мощностями

Эти три типа мощностей можно связать друг с другом в тригонометрической форме. Мы называем это треугольником мощностей (см. рисунок ниже).

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Используя законы тригонометрии, мы можем определить длину каждой стороны (величину мощности каждого типа), если даны длины двух других сторон или длина одной стороны и угол.

Источник

Твердотельное реле (ТТР)

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Перейти к каталогу Твердотельных реле KIPPRIBOR

Перейти к Помощнику подбора твердотельных реле KIPPRIBOR

Перейти к каталогу Радиаторы для твердотельных реле KIPPRIBOR

Роль твердотельных реле (SSR) в современных системах автоматики высока. В последние годы в различных областях техники (в автомобильной электронике, системах связи, бытовой электронике и промышленной автоматике) идет переход от построения систем коммутации на обычных электромагнитных реле, пускателях и контакторах к удобным, надежным способам коммутации с помощью твердотельных полупроводниковых реле.

Что нужно знать о твердотельных реле? Где применяется и как оно устроено? Ответы на эти вопросы Вы найдете на страницах нашего портала.

Твердотельное реле (ТТР) – это класс современных модульных полупроводниковых приборов, выполненных по гибридной технологии, содержащих в своем составе мощные силовые ключи на симисторных, тиристорных либо транзисторных структурах. Они с успехом используются для замены традиционных электромагнитных реле, контакторов и пускателей. Обеспечивают наиболее надежный методо коммутации цепей.

Токичто такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Классификация ТТР KIPPRIBOR по типу коммутируемой сети

ТТР для коммутации однофазной сети:

    могут использоваться для коммутации трехфазной сети при использщовании одного однофазного ТТР на каждую фазу; позволяют осуществлять коммутацию нагрузки с любой схемой включения («Звезда», «Звезда с нейтралью» и «Треугольник»). Применение отдельного ТТР для каждой из 3-х фаз повышает надежность коммутации, а, следовательно, и всей системы управления в целом; позволяют коммутировать нагрузку резистивного и индуктивного типа;

ТТР для коммутации трехфазной сети:

    Позволяют осуществлять коммутацию нагрузки с любой схемой включения («Звезда», «Звезда с нейтралью» и «Треугольник») позволяют коммутировать нагрузку только резистивного типа.

Токи утечки

В общем случае ток утечки – это ток, который протекает в землю или на сторонние проводящие части в электрической неповрежденной цепи.

RC-цепочка (снабберная RC цепь)

Типы нагрузок твердотельных реле. Общая классификация

Резистивная нагрузка – электрическая нагрузка в виде сопротивления (резистора), на котором происходит преобразование электрической энергии в тепловую.

ТЭН – нагреватель в виде металлической трубы, заполненный теплопроводящим электрическим изолятором в центре которого установлена нагревательный элемент определенного сопротивления. В качестве нагревательного элемента обычно используется нихромовая нить. ТЭН относится к нагрузке резистивного типа с малыми пусковыми токами.

Индуктивная нагрузка – электрическая нагрузка с большой индуктивной составляющей.

К такой нагрузке относятся электрические аппараты в составе которых имеются электрические катушки либо обмотки: соленоиды клапанов, трансформаторы, электродвигатели, дроссели и пр.

Особенностью индуктивной нагрузки являются высокие потребляемые токи при её включении (пусковые токи), вызванные переходными электрическими процессами. Пусковые токи высоко-индуктивной нагрузки могут превышать номинальный ток в несколько десятков раз и быть достаточно длительными, поэтому при применении ТТР для коммутации индуктивной нагрузки необходимо выбирать номинал ТТР с учетом пусковых токов нагрузки.

Классификация ТТР KIPPRIBOR по диапазону коммутируемого напряжения

    Стандартный диапазон коммутации:

    Диапазон коммутации постоянной нагрузки:

в серии HDxx25DD3 используется диапазон коммутируемого напряжения 20…250 VDC для коммутации нагрузки постоянного тока;

    Диапазоны регулирования напряжения при управлении нагрузкой:

— в серии HDxx44VA используется​ диапазон регулирования нагрузки 10…440 VAC для регулирования напряжения с помощью внешнего переменного резистора ;

— в серии HDxx2210U используется диапазон регулирования напряжения 10…220 VAC.

Класс по напряжению – применительно к полупроводниковым приборам (тиристорам) обозначает максимально допустимое значение повторяющегося импульсного напряжения в закрытом состоянии и максимально допустимое значение обратного напряжения приложенного к полупроводниковому элементу. Класс по напряжению обычно маркируется цифрами в виде количества сотен вольт, например 9-й класс по напряжению будет означать, что данный полупроводниковый элемент выдерживает максимальное пиковое напряжение 900 Вольт. Для сети питания с номинальным напряжением 220В, рекомендательно использовать полупроводниковые элементы не ниже 9-го класса по напряжения.

ТТР KIPPRIBOR для коммутации больших можностей серий BDH и SBDH имеют 11 и 12 класс напряжения, что позволяет им выдерживать очень значительные перегрузки.

Классификация твердотельных реле KIPPRIBOR по типу управляющего сигнала

    управление напряжением постоянного тока (3…32 В); управление напряжением переменного тока (90…250 В); ручное управление выходным напряжением с помощью переменного резистора (470-560 кОм, 0,25-0,5 Вт); аналоговое управление выходным напряженим с помощью унифицированного сигнала напряжения 0…10В

Различные варианты управляющих сигналов позволяют применять твердотельные реле в качестве коммутационных элементов в разнотипных системах автоматического управления.

Классификация твердотельных реле по способу коммутации

Твердотельные реле с контролем перехода через ноль применяются для коммутации:

    резистивных (электрические нагревательные элементы, лампы накаливания), емкостных (помехоподавляющие сглаживающие фильтры, имеющие в своем составе конденсаторы) и слабоиндуктивных (катушки соленоидов, клапанов) нагрузок.

При подаче управляющего сигнала, напряжение на выходе такого реле появляется в момент первого пересечения линейным напряжением нулевого уровня. Это позволяет уменьшить начальный бросок тока, снизить уровень создаваемых электромагнитных помех и, как следствие, увеличить срок службы коммутируемых нагрузок.

Недостатком реле данного типа является невозможность коммутации высокоиндуктивной нагрузки, когда cos φ >

Серии KIPPRIBOR HDхх44ZD3 и HDхх44ZA2 общепромышленные ТТР в стандартном корпусе. Однофазные универсальные твердотельные реле для коммутации в наиболее распространенных в промышленности диапазонах токов нагрузки (резистивной до 30 А, индуктивной до 4 А) для коммутации однофазной или трехфазной нагрузки с любой схемой включения («Звезда», «Звезда с нейтралью» и «Треугольник»). >>

Серия KIPPRIBOR HDхх25DD3 ТТР для коммутации цепей постоянного тока. Однофазные тердотельные реле (ТТР) для коммутации цепей нагрузки постоянного тока (резистивной до 30 А, индуктивной до 4 А), а также для усиления сигнала при подключении нескольких ТТР к одному регулирующему прибору с небольшой нагрузочной способностью его выхода. >>

Серии KIPPRIBOR HDxx44VA и HDxx2210U ТТР для непрерывного регулирования напряжения. Однофазные тердотельные реле (ТТР) для непрерывного регулирования напряжения питания резистивной нагрузки до 30 А в диапазоне от 10 В до номинального значения пропорционально входному сигналу.

Типы управляющих сигналов:
• переменный резистор 470 кОм, 0,5 Вт для HDxx44VA;
• унифицированный сигнал напряжения 0…10В для HDxx2210U. >>

Серии KIPPRIBOR SBDHxx44ZD3 (малогабаритные) и BDHxx44ZD3 для коммутации мощной нагрузки в корпусе промышленного стандарта. Однофазные тердотельные реле (ТТР) для коммутации цепей питания мощных нагрузок резистивного и индуктивного типа в однофазной или трехфазной сети. Перекрывают самый большой на сегодняшний день в России диапазон токов нагрузки. >>

Серия KIPPRIBOR HDHxx44ZD3 для коммутации мощной нагрузки в стандартном корпусе. Однофазные общепромышленные тердотельные реле (ТТР) для коммутации цепей питания мощных нагрузок в однофазной или трехфазной сети (резистивной до 90 А, индуктивной до 12 А). >>

Серии KIPPRIBOR HTхх44ZD3 и HTхх44ZA2 трехфазные ТТР для коммутации резистивной нагрузки. Трехфазные общепромышленные тердотельные реле (ТТР) для коммутации резистивной нагрузки (до 90 А) трехфазной либо трех однофазных цепей питания нагрузки. Обеспечивают одновременную коммутацию по каждой из 3-х фаз. >>

Рекомендации по выбору твердотельных реле

Нагрев реле при коммутации нагрузки обусловлен электрическими потерями на силовых полупроводниковых элементах. Но увеличение температуры накладывает ограничение на величину коммутируемого тока. Чем выше температура реле, тем меньший ток оно способно коммутировать. Достижение температуры в 40 0С не вызывает ухудшения рабочих параметров устройства. При нагреве реле выше 60 0С допускаемая величина коммутируемого тока сильно снижается. Нагрузка в этом случае может отключаться не полностью, а реле перейти в неуправляемый режим работы и выйти из строя.

При работе с большинством типов нагрузок включение реле сопровождается скачком тока различной длительности и амплитуды, величину которого необходимо учитывать при выборе реле.

Для более широкого класса нагрузок можно отметить следующие величины пусковых перегрузок:

    чисто активные (нагреватели) нагрузки дают минимально возможные скачки тока, которые практически устраняются при использовании реле с переключением в «0»; лампы накаливания, галогенные лампы при включении пропускают ток в 7…12 раз больше номинального; флуоресцентные лампы в течение первых секунд (до 10 с) дают кратковременные скачки тока, в 5…10 раз превышающие номинальный ток; ртутные лампы дают тройную перегрузку по току в течение первых 3-5 мин.; обмотки электромагнитных реле переменного тока: ток в 3…10 раз больше номинального в течение 1-2 периодов; обмотки соленоидов: ток в 10…20 раз больше номинального в течение 0,05 0,1 с; электродвигатели: ток в 5…10 раз больше номинального в течение 0,2 0,5 с; высокоиндуктивные нагрузки с насыщающимися сердечниками (трансформаторы на холостом ходу) при включении в фазе нуля напряжения: ток в 20…40 раз больше номинального в течение 0,05 0,2 с; емкостные нагрузки при включении в фазе, близкой к 90°: ток в 20…40 раз больше номинального в течение времени от десятков микросекунд до десятков миллисекунд.

Способность твердотельных реле выдерживать токовые перегрузки характеризуются величиной «ударного тока». Это амплитуда одиночного импульса заданной длительности (обычно 10 мс). Для реле постоянного тока эта величина обычно в 2 – 3 раза превосходит значение максимально допустимого постоянного тока, для тиристорных реле это соотношение около 10.

Для токовых перегрузок произвольной длительности можно исходить из эмпирической зависимости: увеличение длительности перегрузки на порядок ведет к уменьшению допустимой амплитуды тока.

Выбор номинального тока твердотельного реле для конкретной нагрузки должен заключаться в соотношении между запасом по номинальному току реле и введением дополнительных мер по уменьшению пусковых токов (токоограничивающие резисторы, реакторы и т. д.).

Для повышения устойчивости твердотельного реле к импульсным помехам параллельно коммутирующим контактам ТТР имеется внешняя цепь, состоящая из последовательно включенных резистора и емкости (RC-цепь). Для более полной защиты от источника перегрузки по напряжению со стороны нагрузки необходимо включить защитные варисторы параллельно каждой фазе твердотельного реле.

При коммутации индуктивной нагрузки использование защитных варисторов обязательно. Выбор необходимого наминала варистора зависит от величины напряжения питающего нагрузку, и осуществляется исходя из условия:

Тип используемого варистора определяется на основе конкретных характеристик работы реле. Наиболее распространенными сериями отечественных варисторов являются: СН2-1, СН2-2, ВР-1, ВР-2.

Твердотельное реле обеспечивает надежную гальваническую изоляцию входных и выходных электрических цепей друг от друга, а также токоведущих цепей от элементов конструкции прибора, поэтому применение дополнительных мер изоляции цепей не требуется.

Таблица помощи в подборе твердотельного реле KIPPRIBOR. >>

Радиаторы для твердотельных реле KIPPRIBOR

Выбор радиаторов KIPPRIBOR РТР

Однако, большинство применений твердотельных реле – типовое (установка в вертикальный шкаф, нагрузка – нагревательные элементы). В этом случае можно упростить выбор радиатора, используя Таблицу «Выбор радиатора для ТТР».

ГЛАВНОЕ ПРАВИЛО ВЫБОРА РАДИАТОРА

При выборе радиатора охлаждения необходимо руководствоваться:

— в первую очередь, способностью радиатора рассеивать тепло;

— и только потом уделять внимание габаритным характеристикам.

ГЛАВНОЕ ПРАВИЛО МОНТАЖА РАДИАТОРА

Расположение ребер охлаждения радиатора всегда должно соответствовать направлению потоков движения воздуха – т. е. радиатор всегда должен быть расположен таким образом, чтобы его ребра охлаждения были параллельны потокам воздуха (естественным – снизу вверх или в соответствии с расположенным радом искусственным источником образования потоков воздуха).

Монтаж радиаторов РТР осуществляется на плоскость.

Источник

Что такое реактивная мощность и как её рассчитать?

Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.

Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.

Что такое реактивная мощность?

Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.

Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.

Строго говоря, приведённая выше формула справедлива только для постоянного тока. Однако, в цепях синусоидального тока формула работает лишь тогда, когда нагрузка потребителей чисто активная. При резистивной нагрузке вся электрическая энергия расходуется на выполнение полезной работы. Примерами активных нагрузок являются резистивные приборы, такие как кипятильник или лампа накаливания.

При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.

На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.

К устройствам с индуктивными нагрузками относятся:

Ёмкостными сопротивлениями обладают конденсаторы.

Физика процесса

Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.

Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).

При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры Рис. 1. Сдвиг фаз индуктивной нагрузкой

Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.

Важно запомнить:

Треугольник мощностей и cos φ

Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры Рис. 2. коэффициент мощности

Применяя теорему Пифагора, вычислим модуль вектора S:

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Отсюда можно найти реактивную составляющую:

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примерыРеактивная составляющая

Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.

Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1.

Формулы

Поскольку реактивная мощность зависит от угла φ, то для её вычисления применяется формула: Q = UI×sin φ. Единицей измерения реактивной составляющей является вар или кратная ей величина – квар.

Активную составляющую находят по формуле: P = U*I×cosφ. Тогда

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примеры

Зная коэффициент Pf (cos φ), мы можем рассчитать номинальную мощность потребителя тока по его номинальному напряжению, умноженному на значение силы потребляемого тока.

Способы компенсации

Мы уже выяснили, как влияют реактивные токи на работу устройств и оборудования с индуктивными или ёмкостными нагрузками. Для уменьшения потерь в электрических сетях с синусоидальным током их оборудуют дополнительными устройствами компенсации.

Принцип действия установок компенсации основан на свойствах индуктивностей и ёмкостей по сдвигу фаз в противоположные стороны. Например, если обмотка электромотора сдвигает фазу на угол φ, то этот сдвиг можно компенсировать конденсатором соответствующей ёмкости, который сдвигает фазу на величину – φ. Тогда результирующий сдвиг будет равняться нулю.

На практике компенсирующие устройства подключают параллельно нагрузкам. Чаще всего они состоят из блоков конденсаторов большой ёмкости, расположенных в отдельных шкафах. Одна из таких конденсаторных установок изображена на рисунке 3. На картинке видно группы конденсаторов, используемых для компенсации сдвигов напряжений в различных устройствах с индуктивными обмотками.

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примерыРис. 3. Устройство компенсации

Компенсацию реактивной мощности ёмкостными нагрузками хорошо иллюстрируют графики на рисунке 4. Обратите внимание на то, как эффективность компенсации зависит от напряжения сети. Чем выше сетевое напряжение, тем сложнее компенсировать паразитные токи (график 3).

что такое резистивная нагрузка примеры. Смотреть фото что такое резистивная нагрузка примеры. Смотреть картинку что такое резистивная нагрузка примеры. Картинка про что такое резистивная нагрузка примеры. Фото что такое резистивная нагрузка примерыРис. 4. Компенсация реактивной мощности с помощью конденсаторов

Устройства компенсации часто устанавливаются в производственных цехах, где работает много устройств на электроприводах. Потери электричества при этом довольно ощутимы, а качество тока сильно ухудшается. Конденсаторные установки успешно решают подобные проблемы.

Нужны ли устройства компенсации в быту?

На первый взгляд в домашней сети не должно быть больших реактивных токов. В стандартном наборе бытовых потребителей преобладают электрическая техника с резистивными нагрузками:

Коэффициенты мощности современной бытовой техники, такой как телевизор, компьютер и т.п. близки к 1. Ими можно пренебречь.

Но если речь идёт о холодильнике (Pf = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.

Экономический эффект от установки таких устройств ощутимо скажется на вашем семейном бюджете. Вы сможете экономить около 15% средств ежемесячно. Согласитесь, это не так уж мало, учитывая тарифы не электроэнергию.

Попутно вы решите следующие вопросы:

Для того чтобы ток и напряжение работали синфазно, устройства компенсации следует размещать как можно ближе к потребителям тока. Тогда реальная отдача индуктивных электроприёмников будет принимать максимальные значения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *