что такое репрезентативность выборки
Полезные статьи → Как правильно рассчитать объем выборки?
Один из главных компонентов тщательно продуманного исследования – определение выборки и что такое репрезентативная выборка. Это как в примере с тортом. Ведь не обязательно съедать весь десерт, чтобы понять его вкус? Достаточно небольшой части.
Так вот, торт – это генеральная совокупность (то есть все респонденты, которые подходят для опроса). Она может быть выражена территориально, например, лишь жители Московской области. Гендерно – только женщины. Или иметь ограничения по возрасту – россияне старше 65 лет.
Высчитать генеральную совокупность сложно: нужно иметь данные переписи населения или предварительных оценочных опросов. Поэтому обычно генеральную совокупность «прикидывают», а из полученного числа высчитывают выборочную совокупность или выборку.
Что такое репрезентативная выборка?
Выборка – это чётко определенное количество респондентов. Её структура должна максимально совпадать со структурой генеральной совокупности по основным характеристикам отбора.
Например, если потенциальные респонденты – всё население России, где 54% — это женщины, а 46% — мужчины, то выборка должна содержать точно такое же процентное соотношение. Если совпадение параметров происходит, то выборку можно назвать репрезентативной. Это значит, что неточности и ошибки в исследовании сводятся к минимуму.
Объем выборки определяется с учётом требований точности и экономичности. Эти требования обратно пропорциональны друг другу: чем больше объем выборки, тем точнее результат. При этом чем выше точность, тем соответственно больше затрат необходимо на проведение исследования. И наоборот, чем меньше выборка, тем меньше на неё затрат, тем менее точно и более случайно воспроизводятся свойства генеральной совокупности.
Поэтому для вычисления объема выбора социологами была изобретена формула и создан специальный калькулятор:
Доверительная вероятность и доверительная погрешность
Что означают термины «доверительная вероятность» и «доверительная погрешность»? Доверительная вероятность – это показатель точности измерений. А доверительная погрешность – это возможная ошибка результатов исследования. К примеру, при генеральной совокупности более 500 00 человек (допустим, проживающие в Новокузнецке) выборка будет равняться 384 человека при доверительной вероятности 95% и погрешности 5% ИЛИ (при доверительном интервале 95±5%).
Что из этого следует? При проведении 100 исследований с такой выборкой (384 человека) в 95 процентов случаев получаемые ответы по законам статистики будут находиться в пределах ±5% от исходного. И мы получим репрезентативную выборку с минимальной вероятностью статистической ошибки.
После того, как подсчет объема выборки выполнен, можно посмотреть есть ли достаточное число респондентов в демо-версии Панели Анкетолога. А как провести панельный опрос можно подробнее узнать здесь.
Репрезентативная выборка
Репрезентативная выборка — это группа людей, товаров, объектов, которая имеет все необходимые характеристики, которые важны для исследований.
Она представляет собой часть генеральной совокупности, при этом важные параметры выборки не должны отличаться от характеристик генеральной совокупности.
Рассмотрим на примере торта, он представляет собой генеральную совокупность, то есть весь комплекс, целое. Если мы отрежем кусок торта для исследований, то такая выборка является репрезентативной, потому что свойства этого куска точно такие же, как у всего остального торта и по нему можно определить, какими свойствами обладает все целое.
Если целевая аудитория — это генеральная совокупность, то часть людей, отдельная подгруппа будет представлять собой репрезентативную выборку. Чаще всего репрезентативная выборка формируется путем простого случайного отбора респондентов. Это позволяет получить объективные данные. Другими словами, репрезентативная выборка представляет собой уменьшенный вариант генеральной совокупности.
Случайный отбор происходит по-разному. К примеру, чтобы опросить жителей определенного населенного пункта может быть взята база телефонных номеров. Компьютер случайно выбирает с помощью генерирования чисел представителей, которым будет сделан звонок. Специалисты обзванивает, к примеру, каждого 10 человека.
Иногда сформировать репрезентативную выборку случайным методом удается с трудом, например, если компьютер непреднамеренно выберет номера телефонов молодёжи, то при этом будут не учтены характеристики людей более старшего возраста.
Или, если продолжать проводить аналогию с едой, как с тортом, то выбрать часть, полностью соответствующую характеристикам целого иногда сложно. Возьмем, к примеру, суп. Если оценивать характеристики всего содержимого кастрюли по случайно взятому половнику — можно зачерпнуть больше бульона или только овощи. Поэтому в некоторых случаях нужен другой подход: формирование нескольких репрезентативных выборок, валидная исследовательская методика.
Иначе будет нарушена репрезентативность выборки, а значит, получены недостоверные результаты исследования, потерян бюджет или нанесены финансовые убытки в результате использования неправильных данных.
Статьи о маркетинге, автоматизации и интеграциях в нашем Блоге
Настроить интеграцию без программистов ApiX-Drive
Репрезентативность выборочных данных
Репрезентативность — важнейшее свойство данных, используемых для построения аналитических моделей. Независимо от того, в какой предметной области и какими методами производятся выборочные исследования, отсутствие репрезентативности выборки приводит к некорректным результатам. В статье рассказываем подробнее об этом важном свойстве.
Репрезентативность — важнейшее свойство данных, используемых для построения аналитических моделей. Оно отражает способность данных представлять зависимости и закономерности исследуемой предметной области, которые должна обнаружить и научиться воспроизводить построенная модель. Иными словами, репрезентативность показывает, содержат ли анализируемые данные достаточно информации для построения качественной модели, а так же, может ли эта информация быть использована алгоритмом построения модели.
Репрезентативность генеральной совокупности отражает способность совокупности описывать существенные свойства, зависимости и закономерности объектов, процессов и явлений предметной области. Она достигается за счёт правильной организации сбора и консолидации первичных данных.
Репрезентативность выборки описывает способность выборочных данных отражать структурные свойства совокупности, из которой они были извлечены. Т.е. даёт ответ на вопрос: можно ли в исследовании заменить совокупность на выборку без значимого ухудшения результатов анализа. Репрезентативность выборки достигается с помощью правильного выбора метода сэмплинга.
Таким образом, репрезентативность выборки касается только воспроизведения характеристик совокупности. Если сама исходная совокупность плохо представляет предметную область, то, даже если полученная из неё выборка будет репрезентативной, построить на её основе корректную с точки зрения предметной области модель будут невозможно.
Например, пусть компания собирается вывести на рынок новый продукт. При этом она хочет провести маркетинговые исследования в виде опроса клиентов о желаемых характеристиках и параметрах продукта. Число клиентов компании насчитывает сотни тысяч человек (генеральная совокупность), поэтому опросить их всех не представляется возможным физически, не является целесообразным экономически.
Поэтому компания формирует выборку клиентов для проведения опроса. Если мнение клиентов из выборки отражает мнение большинства клиентов и может быть использовано для принятия решений о параметрах и характеристиках нового продукта, то такая выборка будет репрезентативной.
Независимо от того, в какой предметной области и какими методами производятся выборочные исследования, отсутствие репрезентативности выборки приводит к некорректным результатам. Поэтому в процессе анализа необходимо убедиться, что сформированная выборка репрезентативна.
Таким образом, репрезентативная выборка — это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.
Особенно важным является обеспечение репрезентативности в машинном обучении, для построения моделей классификации и регрессии используется несколько выборок: обучающая, тестовая и валидационная, которые тем или иным способом отбираются из исходного набора данных. И все эти выборки должны быть репрезентативными.
Обеспечение репрезентативности
В основе построения репрезентативной выборки лежит правильный выбор используемого алгоритма сэмплинга. При этом размер выборки, хотя и является важным, сам по себе не гарантирует ее репрезентативности. Например, интернет-опрос может показать, что 100% людей пользуется интернетом, хотя это не соответствует действительности (т.е. репрезентативность нарушена).
Выделяют качественную (структурную) и количественную репрезентативность.
Рисунок 1. Количественная и качественная репрезентативность
Качественная репрезентативность
Качественная репрезентативность показывает, что все группы, присутствующие в совокупности, будут представлены и в выборке. Для этого каждый элемент совокупности должен иметь равную вероятность, быть выбранным, а сама выборка должна производиться из однородных групп.
Наиболее оптимальным способом формирования репрезентативной выборки является простой случайный сэмплинг, поскольку в этом случае у любого представителя генеральной совокупности будет одинаковая вероятность попасть в выборку.
Например, при формировании выборки клиентов для опроса, в нее попадут люди из различных социальных групп пропорционально их долям в генеральной совокупности. В результате, выборка будет представлять собой уменьшенную копию генеральной совокупности.
Случайность отбора респондентов в выборку может обеспечивается различными методами. Например, для опроса клиентов берутся номера клиентских карт, которые случайным образом отбираются компьютерной программой с использованием генератора случайных чисел.
Однако, на практике применить простой случайный сэмплинг не всегда представляется возможным. Это связано с тем, что генеральная совокупность может быть неоднородной и будет содержать группы объектов.
Например, если опрос будет проводиться по телефону, то большинство откликов будет получено от пенсионеров, как людей менее занятых и более склонных идти на контакт. Очевидно, что если опрос проводится о продукте, ориентированном на молодёжь, то ценность мнения пенсионеров вряд ли будет высокой.
Чтобы решить эту проблему, можно использовать случайный стратифицированный сэмплинг, когда исходная совокупность сначала разделяется на слои (страты) по некоторому признаку. Например, клиенты могут быть стратифицированы по возрасту. Тогда страты могут быть сформированы пропорционально доле объектов в группах, что позволит уменьшить или увеличить долю той или иной группы, сохранив репрезентативность.
Другой вариант — использовать кластерный (групповой) сэмплинг, когда клиенты предварительно разбиваются на качественно однородные группы — кластеры, и отбор производится из каждого кластера независимо. При этом вероятность отбора может быть одинаковой для всех кластеров, или различной. Можно некоторые кластеры вообще исключить из отбора. В нашем примере клиенты могут быть разбиты на кластеры по социальному статусу — студенты, работающие, пенсионеры, военнослужащие и т.д. Таким образом, долю, пенсионеров в выборке, можно уменьшить или совсем исключить.
Количественная репрезентативность
Количественная репрезентативность показывает, является ли достаточным число элементов выборки для представления характеристик генеральной совокупности с заданной погрешностью. Например, при неизвестной величине генеральной совокупности, когда результат отражается в виде показателя относительной доли, число элементов выборки, обеспечивающее количественную репрезентативность, может быть вычислено по формуле:
где t — доверительный коэффициент, показывающий, какова вероятность того, что размеры показателя не будут выходить за границы предельной ошибки, p — доля единиц наблюдения, обладающих изучаемым признаком, q=1−p — доля единиц наблюдения, не обладающих изучаемым признаков, Δ — допустимая ошибка выборки.
n=\frac<2^<2>\cdot 0,25\cdot 0,75><0,05^<2>>=300 заёмщиков.
Если же показатель — не относительная средняя величина просроченной задолженности по всем клиентам, то число наблюдений будет:
Если используется выборка без возврата и размер генеральной совокупности известен, то для определения необходимого размера случайной выборки при использования относительных величин (долей) применяется формула:
n=\frac
где N — число наблюдений генеральной совокупности. Для средних значений исследуемой величины формула примет вид:
n=\frac<2^<2>\cdot 0,25\cdot 0,75\cdot 500><0,05^<2>\cdot 500+2^<2>\cdot 0,25\cdot 0,75>\approx 188 клиентов.
Таким образом, необходимый объем выборки при безвозвратном отборе меньше, чем при возвратном (соответственнo, 188 и 300).
В целом, число наблюдений, требуемое для получения репрезентативной выборки, изменяется обратно пропорционально квадрату допустимой ошибки.
Методы оценки репрезентативности
Формально, выборку называют репрезентативной, когда результат оценки определенного параметра по данной выборке совпадает с результатом, оцененным по генеральной совокупности с учетом допустимой погрешности (ошибки репрезентативности). Если выборочная оценка отличается от оценки по генеральной совокупности более, чем на заданный уровень погрешности, то такая выборка считается нерепрезентативной.
Репрезентативность оценивается по отдельным параметрам выборки и совокупности. При этом выборка может оказаться репрезентативной по одним параметрам и нерепрезентативной по другим. Поэтому говорить о репрезентативности как о дихотомическом свойстве выборки (репрезентативна или нерепрезентативна) было бы не верно: выборка может одни параметры генеральной совокупности воспроизводить более точно, а другие — менее. Поэтому правильнее говорить о мере репрезентативности определённой выборки по конкретным параметрам.
Основным моментом в определении репрезентативности выборки является обоснование погрешности, в пределах которой выборка признается репрезентативной. Одна и та же выборка может быть достаточно репрезентативной для одной задачи и недостаточно для другой. Кроме этого, нужно проверять репрезентативность выборки по параметрам, имеющим существенное значение для предметной области исследования. Например, в маркетинговых исследованиях для анализа клиентов важны пол, возрасту, образование и пр.
Следует отметить, что далеко не все задачи бизнес-аналитики требуют строгого статистического подтверждения репрезентативности выборок. Как правило, это задачи точного прогнозирования. Что касается обычных задач, связанных, например, с определением предпочтений действующих и потенциальных клиентов, то они решаются охватом типичной клиентуры, которую можно найти непосредственно в торговых центрах.
Статистические методы
Данные, полученные в результате выборочных обследований, являются реализациями случайных величин (возраст, стаж работы, доход и т.д.). Обычно, на практике считают, что выборка является репрезентативной, если её статистические параметры (среднее значение, дисперсия, среднеквадратичное отклонение и т.д.) отличаются от параметров совокупности не более, чем на 5%.
Однако, данный подход применим только при условии, что вся генеральная совокупность известна и для неё можно вычислить статистические характеристики. Но на практике такое встречается редко, поскольку часть потенциально интересных для исследования объектов оказывается недоступной для наблюдения.
В этом случае прибегают к формированию двух независимых выборок, вычисляют и сравнивают их характеристики, и если они совпадают (не различаются значимо), то выборки считаются репрезентативными. В теоретическом плане такой подход является достаточно привлекательным, однако, на практике сложно реализуем. Во-первых, формирование нескольких выборок ведёт к дополнительным затратам, а во-вторых, если параметры выборок значимо различаются, то невозможно сказать, какая из них репрезентативна.
Нестатистические методы
Статистические методы оценки репрезентативности выборочных данных, хотя и являются строго обоснованными, но довольно сложны в использовании (особенно для пользователей, не имеющих достаточной математической подготовки). Кроме этого они могут иметь ограничения (например, независимость выборок), удовлетворить которым достаточно сложно.
Статистические подходы к оценке репрезентативности выборок имеет смысл использовать, если для анализа данных используются статистические методы. Методы машинного обучения, которые является эвристическими и в большинстве случаев не обеспечивают точного и единственного решения, вообще говоря, не нуждаются в точной оценке репрезентативности обучающих выборок. Поэтому в них используются свои техники для определения того, насколько обучающая или тестовая выборка хорошо представляют исходную совокупность.
Ещё одной особенностью выборок, используемых в машинном обучении, является то, что объём исходной совокупности, из которой формируются обучающее, тестовое, а при необходимости, и валидационное множество, известен, поскольку данные содержатся в консолидированных таблицах источника данных.
Затем вычислим величину:
где D_<_
Тогда индекс ближайшего соседа будет:
Если значение данного показателя близко к 1, то точки выборки имеют равномерное пространственное распределение. Если меньше 1, то пространственное распределение точек неоднородно. Если NNI больше 1, то имеет место значительная дисперсия значений внутри выборки.
Очевидно, что наилучшим вариантом с точки зрения репрезентативности будет первый случай, когда пространственное распределение точек данных в совокупности и выборке примерно одинаковое. Второй случай показывает, что внутри выборки могут присутствовать некоторое локальные особенности, нехарактерные для всей совокупности.
В литературе можно найти больше количество разнообразных алгоритмов и методов оценки репрезентативности выборок для машинного обучения, разработанных для различных предметных областей исследования и типов задач анализа. Большинство их них являются эвристическими и не гарантируют получения наилучшего результата. Поэтому самым надёжным критерием репрезентативности выборки, на основе которой строилась определённая обучаемая модель, является точность и обобщающая способность самой модели.
Ремонт выборки
Возникает вопрос: а что делать в ситуации, когда аналитику доступна только выборка «как есть», а её репрезентативность неудовлетворительная? При этом доступ к генеральной совокупности для формирования более репрезентативной выборки у него отсутствует (например, из-за проблем с сетью, невозможности повторных исследований из-за высоких затрат и т.д.). В этом случае улучшить ситуацию может специальная процедура, которая называется «ремонт выборки».
Все действия аналитика, связанные с репрезентативностью, можно разделить на два этапа: контроль и ремонт.
Контроль и ремонт выборки рассматриваются как обязательные этапы любого выборочного исследования. Хотя, некоторые авторы не разделяют эти два этапа, а включают ремонт в общую процедуру контроля выборки. Ряд вопросов, связанных с контролем выборки был рассмотрен выше.
Основной целью ремонта является повышение качества выборки в смысле отражения ею зависимостей и закономерностей исследуемых процессов и явлений, которые требуется обнаружить в процессе анализа. При этом не следует путать ремонт выборки с повышением качества данных вообще.
Ремонт выборки, обычно, включает следующие задачи:
Следует отметить, что единого, строго обоснованного подхода к ремонту выборок, вообще говоря, не существует, хотя в литературе можно встретить некоторые общие рекомендации. В большинстве практических случаев аналитику приходится самостоятельно выбирать, какие преобразования следует применить к выборке для повышения её репрезентативности.
Репрезентативность выборки
Согласно теории выборочного метода, неоднократно подтвержденной практикой, опрашивать всех нет необходимости, а можно опросить лишь часть группы, которая может быть в тысячи раз меньше. Эта маленькая часть называется выборкой (или выборочной совокупностью), а большая группа, которую она представляет, называется генеральной совокупностью.
При этом если выборка сформирована правильно, выводы, полученные на основе изучения выборки, могут быть перенесены и на генеральную совокупность. Например, если в выборке женщины значимо чаще, чем мужчины, пользуются дезодорантами, то делается вывод, что и в генеральной совокупности (например, в исследованном городе) присутствует такая закономерность. Процесс переноса выводов с выборки на генеральную совокупность называется генерализацией. А свойство выборки отражать характеристики генеральной совокупности называется репрезентативностью. Для более комфортного запоминания термина на рис.1. приведены иллюстрации, когда выборка отражает свойства генеральной совокупности и когда свойства выборки отличаются от свойств генеральной совокупности.
Рис.1. Иллюстративные примеры соответствия (несоответствия) свойств генеральной совокупности и выборки
Не стоит путать понятие репрезентативности с такими понятиями как валидность и релевантность, хотя они тоже относятся к характеристикам качества исследования. В социальных науках валидность понимается довольно широко, но чаще всего – как обоснованность. Понятие валидности относится не к выборке, а к исследовательской методике. Методика или измерение (анкета, блок вопросов, тест) считается валидным, если фиксирует именно то понятие или свойство, которое планируется измерить. Например, если мы захотим оценить уровень лояльности клиента к магазину и выберем для этого лишь показатель частоты посещения магазина, валидность этого подхода будет неполной: возможно, респондент часто заходит в магазин только из-за банкомата, который там установлен. Валидная методика в данном примере должна включать и другие показатели: предпочтение магазина, суммы покупок в этом и других магазинах, готовность переключиться на другие магазины, готовность рекомендовать магазин и др.
При установлении валидности решающую роль играет обоснование и последующая проверка гипотезы релевантности, то есть соответствия измеряемых параметров характеристикам исследуемого объекта. Житейский пример нерелевантности – измерять уровень счастья человека количеством денег у него (хотя, наверное, не все с этим согласятся). Очевидный пример нерелевантности – попытка измерить массу тела по его температуре.
Но вернемся к понятию репрезентативности. В то время как точность измерений зависит от размера выборки, размер выборки не гарантирует ее репрезентативности. Репрезентативность выборки главным образом обеспечивается способом отбора ее участников (респондентов). Примером явного нарушения репрезентативности может послужить шутка о том, что интернет-опрос показал, что 100% людей пользуется интернетом.
Можно выделить несколько вариантов нарушения репрезентативности выборки: когда опрошены не те люди и когда опрошено слишком много (или мало) определенных людей (например, женщин намного больше, чем мужчин). Кроме того, чем меньше размер выборки, тем меньше вероятность того, что она будет репрезентативной. Например, допустим, 1% населения мог бы заинтересоваться новой услугой. Это 1 из 100 людей. Если размер выборки составляет всего 60 человек, то в вашей выборке может отсутствовать человек, который, скорее всего, будет заинтересован в услуге. Ваша выборка менее репрезентативна, потому что она меньше. Ваши результаты будут разными в зависимости от того, содержит ли ваша выборка одного из этих людей или нет. Пример репрезентативной и нерепрезентативной выборки показан на рис.2.
Рис.2. Пример репрезентативной и нерепрезентативной выборки
На рис.3 показана та же по составу генеральная совокупность, но с другим расположением объектов внутри круга.
Рис.3. Пример репрезентативной и нерепрезентативной выборки при другом расположении объектов генеральной совокупности
Говоря простым языком, репрезентативная выборка – это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.
Простой случайный отбор респондентов представляется оптимальным способом формирования репрезентативной выборки. Поскольку в этом случае у любого представителя генеральной совокупности одинаковая вероятность попасть в выборку, в нее попадут люди с разными характеристиками пропорционально их долям в генеральной совокупности. В итоге выборка будет представлять собой нечто вроде уменьшенной копии генеральной совокупности.
Случайность отбора респондентов в выборку обеспечивается разными способами. Например, для телефонного опроса жителей города берется база данных всех телефонных номеров, и номера респондентов случайным образом выбираются компьютером (с использованием генератора случайных чисел). При уличном опросе интервьюеров распределяют по случайно выбранным точкам и инструктируют опрашивать каждого N-ного прохожего.
Наглядным примером репрезентативной выборки может служить пицца. Если целая пицца – это генеральная совокупность, которую мы хотим изучить, то кусок пиццы – это выборка. Как правило, достаточно одного куска пиццы, чтобы судить обо всей пицце (при условии, что ингредиенты равномерно распределены по ее поверхности). Таким образом, кусок пиццы пиццы на рис.4 – это репрезентативная выборка из пиццы.
Рис.4. Наглядный пример репрезентативной выборки (пицца)
Важно отметить, что не любой кусок пиццы будет репрезентативной выборкой. Разные способы получения куска пиццы могут принципиально повлиять на качество исследования и выводы, которые будут получены при анализе каждого варианта выборки (рис.4)
(рисунок в сушильной камере, готовится к публикации)
Рис.5. Наглядный пример формирования репрезентативной и нерепрезентативной выборки.
Еще один показательный пример формирования репрезентативной выборки – кастрюля, содержимое которой мы должны узнать (допустим, там скрывается борщ). Мы только один раз можем зачерпнуть из кастрюли ложкой (провести исследование). В нашем примере ложка – это выборка, а содержимое кастрюли – генеральная совокупность.
Если мы зачерпнем сверху, то придем к выводу, что в кастрюле бульон. Если снизу – решим, что в кастрюле мясо. Зачерпнув где-то посередине, мы получим картошку или капусту. В любом из трех случаев выводы будут неверны. Чтобы получить достоверный результат, нам стоит хорошенько перемешать содержимое кастрюли, перед тем как пробовать его. Перемешивание в данном случае – аналог процедуры простого случайного отбора, поскольку оно предоставляет всем ингредиентам примерно равную вероятность попадания в ложку-выборку (или тарелку-выборку).
Рис.6. Борщ как модель, демонстрирующая репрезентативность выборки.
В реальности применить простой случайный отбор респондентов не всегда удается в полной мере. Например, мы можем абсолютно корректно отобрать в выборку нужное количество номеров домашних телефонов случайным образом, но при их прозвоне выяснится, что дозвониться и поговорить удается преимущественно с пенсионерами, а «поймать» дома молодежь и работающих людей получается плохо.
Возвращаясь к примеру с борщом, если у нас вместо кастрюли – огромный ресторанный котел, а в руках все та же обычная ложка, перемешивание будет неэффективным. Чтобы решить задачу, потребуются иные подходы. Например, мы можем теоретически разделить глубину котла на несколько слоев и постараться зачерпнуть содержимое из каждого слоя (из случайного места слоя: не только в центре, но и по краям). Таким образом, наша итоговая выборка будет состоять уже из нескольких выборок и при этом адекватно отражать содержимое всех слоев котла. Подобные альтернативные подходы называются типами выборки, которых придумано достаточно много для того, чтобы максимизировать репрезентативность выборки в сложных условиях реального мира.
Последствия нарушения репрезентативности выборки: некорректные выводы исследования, выброшенный на ветер бюджет исследования, финансовые потери вследствие применения неправильных выводов. Вы можете выбрать валидную исследовательскую методику, рассчитать объем выборки, обеспечивающий приемлемую точность измерений, но, если выборка исследования нерепрезентативна, получить достоверную информацию не удастся.
Самым известным примером нарушения репрезентативности выборки является история провала американского журнала «Литературный дайджест».
В 1936 году журнал в очередной раз провел почтовый опрос общественного мнения о вероятных результатах грядущих президентских выборов в США. До 1936 года опрос всегда правильно предсказывал победителя. Опрос 1936 года показал, что победителем с большим отрывом станет кандидат от республиканцев, но в итоге победителем оказался представитель демократов.
Таким образом, гигантская выборка (около 2,4 млн. человек) не обеспечила достоверных результатов. В чем же заключалась причина ошибки?
Называются две основные причины провала: смещение при формировании выборки и смещение вследствие отказа респондентов от участия в опросе.
Прежде всего, журнал включил своих подписчиков в список для рассылки анкет и, желая расширить выборку, использовал два других доступных тогда списка граждан: зарегистрированных автовладельцев и пользователей телефонов. Во времена Великой Депрессии представители этих групп отличались от остального населения более высоким доходом, как и подписчики самого журнала. Таким образом, полученная база для рассылки не являлась корректным отражением структуры населения США.
Вторая проблема с опросом заключалась в том, что из 10 миллионов человек, чьи имена были в первоначальном списке рассылки, только 2,4 миллиона ответили на опрос. Вероятно, высокий процент отказов был связан с тем, что опрос проводился по почте. Уже в те времена американцы относились к почтовым рассылкам как к спаму. Таким образом, размер выборки составил примерно одну четверть от того, что первоначально планировалось. Когда доля ответивших низка (как это было в данном случае), считается, что исследование страдает от необъективности ответов.
У этой истории две морали: Большая, но неправильно сформированная выборка гораздо хуже маленькой, но правильно сформированной выборки. При проведении опроса не упускайте из внимания смещение отбора и смещение в результате отказов.
Пример из военной практики. Во Вторую мировую войну американские военные столкнулись со следующей проблемой. Не все американские бомбардировщики после задания возвращались на базу. На вернувшихся самолетах оставалось множество пробоин от выстрелов противника, но распределены они были неравномерно: больше всего на фюзеляже и прочих частях, меньше в топливной системе и гораздо меньше — в двигателе. Командованию казалось логичным, что в наиболее поврежденных местах нужно установить больше брони.
Привлеченный к решению задачи математик возразил: данные как раз показывают, что самолет, получивший пробоины в этих местах, еще может вернуться на базу. А самолет, которому попали в бензобак или двигатель, выходит из строя и не возвращается. Поэтому укреплять следует те места, которые у вернувшихся самолетов повреждены меньше всего.
Эта задача служит примером нарушения репрезентативности выборки, когда в нее включены не те респонденты: в данном случае, вернувшиеся самолеты, в то время как не вернувшиеся проигнорированы.
Применительно к маркетинговым исследованиям, эта ситуация подобна следующей. При опросе клиентов бизнеса будет ошибкой опрашивать только текущих клиентов и не опрашивать потерянных клиентов (а какие «пробоины» получили они?).
При опросе посетителей ТРЦ важно правильно расставить интервьюеров. Например, если поставить интервьюеров только у главного входа, в выборку не попадут посетители, приехавшие в ТРЦ на автомобиле и попавшие в него через парковку. Как следствие, выводы, полученные на собранных данных, будут корректны только для той части посетителей, которые приходят в ТРЦ пешком, а значит, делают меньше покупок, не покупают габаритные товары, живут ближе к ТРЦ, чем приезжающие на автомобиле.
Другой пример. Бывает, что в разных районах города сбор анкет идет с разной скоростью: где-то (например, в центре города) большой пешеходный поток и у людей есть время на участие в опросе (отдыхающие, в отпуске, офисные сотрудники на обеде), а на окраинах либо мало людей на улицах, либо все спешат на работу и отказываются участвовать. В результате, если не ограничивать доли районов, в выборке будут преобладать люди из центрального района, которые могут значимо отличаться от остальных людей родом занятий, уровнем дохода и образования, уровнем осведомленности о магазинах и др. Таким образом, собранная выборка уже не будет репрезентативной по отношению к населению всего города.
Несмотря на многие положительные стороны онлайн-опросов, такие как экономичность, оперативность сбора информации, удобство ее обработки и т. д., некоторые их особенности напрямую угрожают репрезентативности исследования:
Во-первых, участники онлайн-опросов – это, как правило, активные пользователи интернета, хорошо в нем разбирающиеся и больше подверженные влиянию интернет-культуры, чем обычные люди.
Во-вторых, люди, у которых есть время и желание регулярно участвовать в онлайн-опросах за небольшое вознаграждение, скорее всего, значительно отличаются от остальных людей как по социально-демографическим, так и по психографическим характеристикам.
В-третьих, профессиональное участие в опросах приводит к так называемой профессиональной деформации, когда ответы респондентов на вопросы новых исследований обусловлены предыдущим опытом, но не жизненным, а опытом участия в других опросах.
Таким образом, в данном случае возникает та ситуация, когда опрашиваются не те люди, хотя по формальным характеристикам они подходят под описание целевой аудитории.
Итак, чтобы получить достаточно точные данные об интересующей нас группе людей, необязательно опрашивать их всех, благодаря свойству репрезентативности выборки.
«Чем больше, тем лучше» – неправильный подход к формированию выборки.
Небольшая репрезентативная выборка лучше большой, но нерепрезентативной выборки. Применительно к выборке не стоит пугаться слова «случайная». Это вовсе не значит, что в исследовании будут получены случайные результаты. Напротив, случайный подход к формированию выборки делает ее максимально похожей на генеральную совокупность, а значит, репрезентативной.
При проектировании выборки следует учитывать опасность смещения структуры выборки вследствие особенностей сбора информации и других условий.