что такое радиационное излучение

Радиация – виды радиоактивных излучений, радиоактивная опасность

Что такое радиация установили Пьер и Мария Кюри. Они выделили из множества тонн руды вещества – полоний и радий, которые также испускали «лучи урана». Ученые объяснили этот процесс распадом неустойчивых атомов при произвольном превращении химических элементов.

Позже наука научилась создавать из стабильных веществ радиоактивные, определила радиацию как ионизирующее излучение, способное, при прохождении через вещество, передавать его атомам свою энергию. В ходе исследований выяснили, какое излучение наиболее опасно для человека.

Виды радиоактивных излучений

Изучая природу радиоактивного излучения, его подвергли воздействию электрического и магнитного полей. Результатом эксперимента стало разделение лучей на положительные и отрицательные, и понимание их неоднородности.

Были открыты закон распада, виды излучений и типы радиоактивности: α-распад, β-превращение, γ-излучение, нейтронное излучение, протонная, кластерная радиоактивности.

Время, за которое распадается ½ начального количества неустойчивых ядер, назвали периодом полураспада.

Проникая в среду, радиация взаимодействует с атомами, возбуждает их и вырывает электроны. Нейтральные атомы превращаются в положительно заряженные ионы – первичная ионизация. Выбитые электроны за счет собственной энергии сталкиваются с атомами среды и создают вторичную ионизацию.

Растеряв энергию, электроны становятся свободными и образуют отрицательные ионы.

Альфа излучение

Есть 40 природных α-активных ядер и 200 созданных человеком. Альфа излучение – это поток частиц из них.

Проникая через слой вещества, α-частица вступает в неупругое взаимодействие с его атомами и молекулами, ускоряет электроны до преодоления кулоновских ядерных сил и производит ионизацию.

Впоследствии, когда энергия частицы уменьшается, она присоединяет 2 свободных электрона и становится атомом гелия.

Пробег частицы в воздухе 10-11 см, а в тканях тела человека – микроны. Ее большая масса препятствует отклонению от прямого пути.

При внешнем воздействии этого типа излучения на кожу – опасности нет. Если радиоактивный элемент попадет во внутрь с пищей, водой или через рану, то нанесет непоправимые последствия для организма за счет продолжительного времени распада.

Нейтронное излучение

Этот тип излучения используется в оружии массового поражения – нейтронной бомбе. Она способна уничтожать живые объекты, оставляя нетронутыми здания, сооружения, технику.

Нейтральные частицы легко проникают сквозь любую среду и взаимодействуют с ядрами элементов. Отдавая им часть своей энергии, создают вторичную (наведенную) радиацию. Надежной защиты от поражающего фактора не существует. Задержать частицы способны большие объемы воды и некоторые виды полимеров, многослойные среды.

Бета-излучение

Бета-излучение представляет собой поток позитронов и нейтрино или электронов и антинейтрино. Существует третий вариант – k-эффект (захват электрона). Ядро поглощает электрон из оболочки и один из протонов становится нейтроном, при этом испускает нейтрино.

β-излучение распространяется со скоростью близкой к скорости света, сильно отклоняется в электромагнитных полях, но обладает меньшей в сотни раз ионизирующей способностью, чем α-частицы.

За счет лучшего сохранения энергии бета-частицы пробегают большее расстояние – от десятков метров в газах до нескольких мм в металлах. Проникновение в живые ткани – 1,5 см.

Гамма излучение

Y-излучение проникает в свинец на 5 см. В газах распространяется на сотни метров, тело человека «прошивает» насквозь.

За счет способности воздействовать на электроны, поле ядра, протоны и нейтроны, гамма-излучение быстро теряет энергию и имеет небольшой уровень ионизации.

Y-частицы – фотоны, создают Комптон-эффект и фотоэффект, образуют электронно-позитронные пары, что подтверждает возможность превращения электромагнитной волны в вещество – единую картину мира.

Рентгеновское излучение

В волновом спектре рентгеновское излучение расположено между ультрафиолетовыми лучами и γ-излучением.

Для создания потока фотонов на рентгеновских частотах используют электровакуумные приборы – трубки. В них 99% затрат энергии – тепловые потери, и 1% создает требуемое излучение.

По степени воздействия лучи относят к мягким или жестким. Для биологических объектов они мутагенные, приводят к ожогам, раку и лучевой болезни.

Источники радиации

С начала изучения урана и его обращения в изотоп свинца Пьером и Марией Кюри, ученые считали, что радиоактивность – природное качество. Но Фредерик и Ирен Жолио-Кюри открыли радиоактивность ядерных реакций. В XXI в. из более 2000 радионуклидов – 300 имеют естественное происхождение, остальные виды радиации сделаны людьми.

Естественные источники

В единой вселенной не существует отдельных форм энергии, информации, внешнего и внутреннего, категорий причины и следствия, времени и пространства – все это ментальные конструкции человеческого мышления для ориентации в мире.

Природные источники радиации – формы электромагнитных излучений, которые являются неотделимой частью всего на планете – естественным фоном.

Разновидности источников естественного происхождения

Космические источники. Процессы в активных галактиках и взрывы «сверхновых» в нашей, сопровождаются появлением лучей, которые миллионы лет блуждают в пространстве и влетают в атмосферу Земли со скоростями близкими к световым.

Излучение идет от Солнца и от заряженных частиц, вращающихся вокруг планеты. Каждую секунду через 1 кв. м поверхности атмосферы проходят 10 тыс. частиц – 90% протонов (ядер водорода), 9% гелия и 1% почти всех элементов периодической таблицы.

Житель Москвы получает из космоса 0,5 мЗв/год, на вершине Эвереста – 8 мЗв/год.

Земные источники излучения. Природная радиация появляется от гранитных пород гор, базальтов, сланцев, урана-238 и тория-232 с периодом распада миллионы лет и продуктов их полураспада.

Есть геопатогенные зоны с вертикальным излучением альфа, бета и гамма типов, которые не экранируются и не уменьшаются при удалении от поверхности. Исследования разломов коры под населенными пунктами показало, что в некоторых районах смертность в 5-20 раз выше естественной.

Газ радон – продукт превращения радия, источник мифов о злых горных духах, непонятным способом связан с солнечной активностью и пятнами на звезде.

Внутреннее облучение – 60-70% воздействия на организм. Оно происходит от попадающих в тело с пищей, дыханием, повреждениями кожи радиоактивных элементов.

По оценкам ученых 180 мЗв/год человек получает с калием-40, который содержится в продуктах питания (больше всего в какао, горохе, картофеле, говядине).

Попав в организм, такие радионуклиды, как радий-226 или плутоний-239, не выводятся никогда, облучают до конца жизни.

Искусственные источники

Антропогенное радиационное излучение составляет 2-3% от всей радиации. Но оно часто бывает концентрированным – аварии на АС, атомные взрывы, ускорители, ядерные исследования, захоронения отходов, бытовые источники, и представляет угрозу персоналу, пользователям, населению.

Фосфатные удобрения увеличивают активность урана. Производящие их заводы наполняют местный воздух в 14 раз большим содержанием радионуклидов, чем нормальный фон. Сжигание каменного угля приводит к выбросам в атмосферу калия-40, урана и тория.

Дозу содержат строительные материалы, перераспределяемые людьми из зон с повышенной радиацией.

Облучением подвергаются пациенты при медицинских обследованиях с применением рентгена и радионуклидной диагностики.

Что такое нормальный радиационный фон?

Для Москвы на открытом воздухе все источники радиации вместе не дают более 15-25 мкЗв/час.

В России нормальным считается фон, который соответствует «Нормам радиационной безопасности» (НРБ). Муниципальные органы Госсанэпиднадзора могут разрешить повышение норм не более 100 мЗв/год. 200 мЗв/год допускается распоряжением федерального Госкомсанэпиднадзора.

Опасность радиации не выходит за рамки, если годовая доза населения от техногенных источников не превышает 1 мЗв/год.

Переселение жильцов из зданий необходимо, когда мощность γ-излучения не удается снизить меньше 0,6 мкЗв/час.

Проникающая способность излучений

Проникающая способность – расстояние, которое может пробежать частица в разных средах. Оно зависит от материала объекта, длинны волны (энергии) излучения.

Наименьшая способность к проникновению у альфа-частиц. Они тяжелые, сильно ионизируют вещество. За ним следуют: бета-излучение, гамма и рентгеновское, нейтронное.

Альфа-частицы проходят в газе 100 мм, их можно остановить бумагой. Гамма-излучение – толстыми бетонными стенами.

При взрыве бомбы нейтроны убивают живые объекты на расстоянии 2-3 км. Через 12 часов территория становится безопасной.

Виды ионизирующего излучения

Не все электромагнитные колебания способны воздействовать на атомы и разрывать химические связи биологических молекул.

Для разрушающего влияния минимальная частота должна быть 5∙1016 Гц при работе 34 эВ. Чем больше частота, тем больше энергия.

Вредные для людей последствия наступают с ультрафиолетовых и рентгеновских значений спектра фотонов и γ-квантов.

Составляющие атом частицы – электроны, позитроны, нейтроны, нейтрино и антинейтрино, обладают еще большей кинетической энергией. Такие виды ионизирующего излучения, как альфа, бета, гамма, нейтронное, причиняют вред организму, превышающий рентгеновское или солнечное воздействие.

Радиация в медицине

Радиация в медицине используется все чаще. Например, изотоп технеция-99 вводят в тело пациента для «подсветки» больного органа. Радионуклид излучает гамма-кванты с энергией 140 кэВ. Применение ионизирующего излучения в медицине – изотопы талия и тантала для детализированных снимков сердца.

После 1926 г. более 100 тыс. женщин-техников радиологии длительное время наблюдали врачи. Они пришли к выводам, что состояние здоровья специалисток не отличается от контрольной группы.

Проверки последствий многократного облучении в клиниках больных не показали избытка заболеваний лейкемией. Ученые склонны считать, что в 15-30% случаях существует ремиссия, за счет стимулирующего действия радиоактивности.

Также польза радиации – во вращающемся радиоактивном источнике, который находится в камерах при топографических исследованиях.

Влияние радиации на человека

Влияние радиации на живые объекты изучает радиобиология. Подобно химическому воздействию точкой отсчета здесь является доза и концентрация.

Записные книжки, которые оставили после себя Кюри, больше века имеют следы радиоактивности. Анри Беккерель 6 часов носил в кармане жилетки драгоценность – пробирку с радием и получил ожог. Увлеченный работой ученый, чтобы исследовать действие на кожу радионуклида, продолжал эксперименты до образования струпьев и язв. Толчок в развитии методов исследования радиология получила после атомных бомбардировок.

Ионизирующая радиация приводит к изменению физиологических процессов, соматическим и генетическим последствиям для организмов.

Насколько опасно излучение?

Существует 2 механизма влияния излучения на организм – прямой и косвенный. Вместе с ионизацией и возбуждением атомов клеток, происходит распределение энергии облучения внутри тела между молекулами.

Это возможно потому, что вода под воздействием лучей делится на водород и гидроксильную группу, которые через цепь преобразований становятся высокоактивными химическими веществами: гидратным оксидом и перекисью водорода.

Соединения взаимодействуют с органикой, окисляют и разрушают ее. Примеры излучения подтверждают, что происходят изменения биотоков мозга, поражение мозговых структур костей, образование радиотоксинов, перемены в составе крови.

Дозировка облучения

Степень комплексного воздействия ионизации на организм человека характеризует поглощенная доза. В СИ ее принято измерять в Греях (Гр). В литературе часто используется 1 рад (1 Гр = 100 рад). Ионизация воздуха характеризуется экспозиционной дозой.

Радиационное облучение в зависимости от вида производит разное действие на организм. Более тяжелые частицы производят на пути движения больше ионов. Этот эффект учитывают с помощью эквивалентной дозы – измеряют в зивертах.

1 зиверт равен дозе любого вида излучения, которую поглотила биологическая ткань весом 1 кг. Считается, что ионизация создает такие же последствия для биологии, как и поглощенная доза в 1 грей при фотонной природе лучей.

Одни части тела более чувствительны к воздействию облучения, чем другие. Это учитывается с помощью коэффициента радиационного риска. При умножении эквивалентной дозы на соответствующий коэффициент получается эффективная эквивалентная доза, которая характеризует риск для отдельных органов. Измеряется она в зивертах.

Мощность дозы рассчитывается в единицу времени. Например, 1 Гр/с или 1 рад/с.

Последствия облучения

Воздействие радиации на организм неощутимо человеком, а поглощенная энергия вызывает глубокие биологические изменения.

Поражение кожи, заболевания лучевого характера, имеет инкубационный период. Влияние от малых доз накапливается. Красный костный мозг, кровь, хрусталик глаза наиболее уязвимые места.

Лейкоз и другие виды рака

Облучение радиацией в опасных дозах разрушает иммунную систему организма. Тело становится неспособным распознавать и удалять микробы, вирусы, грибки, собственные клетки и ткани, которые становятся чужеродными под влиянием окружающей среды. Первоначально разрушается ДНК и клеточные мембраны.

Тяжелые стадии лучевой болезни вызывают головные боли и головокружение, тошноту, рвоту снижение памяти, нарушение сна, изменение состава крови, кровоизлияние, язвы. Сопротивляемость инфекциям отсутствует. Большинство людей погибают.

Способность радионуклидов вызывать злокачественные опухоли расценивается учеными противоречиво. Некоторые специалисты считают, что рак развивается при нарушениях в иммунной системе, а не вследствие ионизации.

Опыты на мышах не установили однозначность зависимости лейкоза от облучения. Результаты исследований подвергшихся атомной бомбардировки жителей японских городов дают неоднозначную информацию при разных интерпретациях.

Поэтому принято считать, что повышенная доза увеличивает риск заболевания лейкозом и другими формами рака. В малых дозах радиоактивность используют для лечения и профилактики злокачественных опухолей.

Мутации

Опасна радиация для человека тем, что влияет на наследственность. Дефект, при котором участки генетического кода меняются местами, называется мутацией.

Если ген с повреждениями (или хромосома) появится в сперматозоиде или яйцеклетке, то во всех клетках зародыша повторяться эти дефекты.

Мутация в соматической клетке окажет влияние на жизнь индивида. Изменения половых клеток вызовут генетические последствия.

Облучение увеличивает вероятность возникновения новых клеток. Высокая частота врожденных и наследственных дефектов у детей, имеющаяся изначально, усложняет действия ученых по выделению влияния облучения.

Работа с пострадавшими жителями городов Хиросима и Нагасаки позволили науке сделать вывод, что мутации увеличиваются в 2 раза.

Проявление поражения организма

Радиационные поражения бывают разной тяжести. Медицина делит последствия лучевой болезни на 3 вида:

На первой стадии болезнь протекает незаметно для пациента. Медицинские анализы показывают изменения в крови. Следом появляется жалобы на общее недомогание, ухудшение аппетита, сна, шелушение кожи.

На второй стадии появляются головные боли теряется память, ноет сердце, исчезает половое влечение, сон. Возможно кровотечение десен и подкожные кровоизлияния. Если ионизация прекращается, лечебные процедуры способны восстановить организм.

На третьей стадии наступают необратимые последствия. Апатия, тошнота, рвота, выраженные изменения крови, кровоизлияния в головной мозг и внутренние органы. Полное выздоровление уже невозможно. Продолжение контакта с радиоактивной средой приводит к смерти.

Отличие радиации от радиоактивности

Радиоактивность открыта как свойство урана. В этом смысле можно характеризовать объект – радиоактивный элемент таблицы Менделеева, радиоактивный человек и т. д.

Радиацией называют само излучение. Наиболее сильной проникающей способностью обладают альфа, бета, гамма и нейтронные лучи. Какое излучение, таким будет тип радиоактивности. Ионизирующая способность зависит от размера и энергии частиц. И радиоактивность, и излучение бывают ионизирующими.

Солнечные (ультрафиолетовые) лучи, облучающее воздействие медицинских аппаратов, бытовых приборов, в зависимости от величины энергии излучения, могут быть полезными, нейтральными, опасными.

Норма радиоактивного излучения

Институт медико-биологических проблем формирования здоровья в Москве пришел к выводу, что продолжительность жизни на 20% зависит от состояния здоровья, еще на 20% от окружающей среды, на 10% от уровня медобслуживания и на 50% от образа жизни, режима питания и отдыха. Радиоактивное излучение составляет 5% экологическим проблем цивилизации.

Какие бывают нормы радиоактивности?

Радиоактивное облучение техногенного характера совместно с естественными источниками не должно превышать индивидуальную предельно допустимую дозу (ИПДД).

Человек в среднем за 70 лет жизни получается 168 мЗв. Минздравом России через Национальную комиссию по радиационной защите установлено, что ИПДД не должна быть в 2 раза выше естественной величины облучения.

НРБ – нормы радиационной безопасности, выделяют 2 категории граждан, подвергающихся воздействию радиации.

Категория А – профессиональные сотрудники, которые работают с источниками ионизирующих излучений.

Категория B – часть населения, вынужденная проживать или работать в местах, где могут находиться радиоактивные вещества.

При ликвидации аварий превышение дозовых пределов допускается только ради спасения жизни людей и отсутствия возможности принять меры защиты.

Участвовать в спасательных мероприятиях могут только мужчины старше 30 лет, при их добровольном согласии в письменном виде, после полного информирования о возможных последствиях для здоровья.

Когда думать о радиации?

Вероятность радиационного поражения определяется с помощью дозиметрических приборов. Контроль осуществляется государственными органами. При желании приобрести в личное пользование в открытой продаже доступны разные варианты измерительных аппаратов.

Если человек не связан по роду профессиональной деятельности с ионизирующими излучениями, беспокоиться о наличие радиации следует, если это подтверждено дозиметром.

Как защититься от радиации?

Индивидуальные средства защиты действует ограниченное время. В случаях внезапного появления техногенных источников радионуклидов обезопасить население невозможно.

Борьба с ионизирующими излучениями возможна в рамках решения глобальных экологических проблем человечества.

Помогает ли от радиации алкоголь?

Подтвержденных научных данных о способности алкогольных напитков противостоять ионизирующему облучению нет.

Источник

«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».

Настоящий материал – обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.

Опасность РАДИАЦИИ реальная и мнимая

«Один из первых открытых природных радиоактивных элементов был назван «радием»
— в переводе с латинского-испускающий лучи, излучающий».

Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.

Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.

Ионизирующее излучение

Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.

Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.

что такое радиационное излучение. Смотреть фото что такое радиационное излучение. Смотреть картинку что такое радиационное излучение. Картинка про что такое радиационное излучение. Фото что такое радиационное излучение

Источники радиации

Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.

Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.

Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).

ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА

Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.

Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.

что такое радиационное излучение. Смотреть фото что такое радиационное излучение. Смотреть картинку что такое радиационное излучение. Картинка про что такое радиационное излучение. Фото что такое радиационное излучениеСледует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.

Заряженные частицы.

Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).

Электрические взаимодействия.

За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения.

И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как «свободные радикалы».

Химические изменения.

В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты.

Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ

Единицы активности радионуклида.
Представляют собой число распадов в единицу времени.Единицы поглощённой дозы.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.1 Зв = 1 Гр = 1 Дж/кг (для бета и гамма)
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.Единицы мощности дозы.
Представляют собой дозу полученную организмом за единицу времени.

Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).

Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.

ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ

Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании «Кварта-Рад»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *