Что такое предикаты в ставках

Значение слова «предикат»

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

1. Лог. То, что в суждении высказывается о предмете суждения; логическое сказуемое.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Предикат в программировании — выражение, использующее одну или более величину с результатом булева типа.

Далее в этой статье слово предикат используется в значении высказывательной формы.

ПРЕДИКА’Т, а, м. [латин. praedicatum — сказуемое] (науч.). 1. В логике — понятие, определяющее предмет суждения — субъект и раскрывающее его содержание (филос.). 2. То же, что сказуемое (грам.).

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

предика́т

1. лог. понятие, определяющее предмет суждения (субъект) и раскрывающее его содержание

2. лингв. член предложения, обозначающий действие или состояние, имеющий признаки глагола; сказуемое ◆ Если на поверхностно-синтаксическом уровне актанты и сирконстанты одинаково подчиняются некоторому предикатному слову (обычно глаголу), то на семантическом уровне ситуация меняется: актанты продолжают подчиняться исходному предикатному слову, а сирконстанты начинают подчиняться другому глубинному предикату. В. С. Храковский, «Понятие сирконстанта и его статус», 1999 г. (цитата из НКРЯ) ◆ Но есть множество ситуаций, когда существительное выступает не как субъект (подлежащее), а, например, как предикат (сказуемое), объект (прямое или косвенное дополнение), атрибут (определение) или обстоятельство. Дмитрий Горбатов, «Шёнберг в «вертикальном срезе»», 2003 г. // «Лебедь(Бостон)» (цитата из НКРЯ)

Делаем Карту слов лучше вместе

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставкахПривет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова сопреть (глагол), сопрели:

Источник

Высказывания и предикаты. Кванторы

п.1. Высказывания

Например:
«Число 13 – нечётное» – высказывание, истинное
«2 + 2 = 5» – высказывание, ложное
«Мы живём в XXI веке» – высказывание, истинное
«Который час?» – не высказывание, т.к. вопросительное предложение
«Вася Пупкин – хороший человек» – не высказывание, т.к. неоднозначно. Но, если определить множество людей, которые оцениваются, и правила их оценки так, что предложение приобретёт однозначность, оно станет высказыванием.

Например:
A: натуральное число a делится на 2;
B: натуральное число a чётное.
Заметим, немного забегая наперёд, что в данном случае из А следует В, и из В следует А. Говорят, что эти высказывания эквивалентны: AB.

п.2. Предикаты

Например:
P(x): x – объект с четырьмя ногами
При x = слон – предикат становится истинным высказыванием, P(«слон» )=1
При x = муравей – предикат становится ложным высказыванием, т.к. у муравья 6 ног, P(муравей)=0
При x = стол – предикат становится истинным высказыванием, P(«стол» )=1
При x = человек – предикат становится ложным высказыванием, т.к. у человека 2 ноги, P(человек)=0

Например:
P(x):|x| ≥ 0 – выполняется при любом значении x, это тождественный предикат.
\(\mathrm>\)

Например:
P(x, y): x делится на y – двуместный предикат, который становится истинным высказыванием на парах значений переменных (15;5), (14;7), (16;4) и т.д.
P(a, b):(a + b) 2 = a 2 + 2ab + b 2 – является тождественным двуместным предикатом, т.к. выполняется для любых a и b.

п.3. Кванторы

«для любого…», «для всех…», «любой…»

Единственности и существования

«существует точно одно такое, что…», «существует и единственно…»

Существуют натуральные числа, которые делятся на 13

Существуют треугольники, у которых все углы равны

Например, равносторонний треугольник со стороной 1

Любое натуральное число делится на 5

Например x = 6 на 5 не делится

У любого выпуклого четырехугольника диагонали перпендикулярны

Например, у прямоугольника со сторонами 3 и 4 угол между диагоналями ≈ 74° ≠ 90°

Разность квадратов двух любых выражений равна произведению суммы и разности

Сумма углов любого треугольника равна 180°.

Третий класс задач (теорема) – самый сложный, т.к. требует не просто одного примера, а доказательства в общем случае.

п.4. Примеры

Пример 1. Запишите по два высказывания (A – истинное, B – ложное), относящиеся к
а) физике
A: Плотность равна отношению массы тела к его объему.
B: КПД механизма может быть больше 1.
б) химии
A: Гидроксид натрия – сильное основание.
B: Сульфат натрия – нерастворимая соль.
в) географии
A: На Земле шесть материков.
B: На Земле три океана.

Пример 3. С каким из кванторов предикат x 2 + 4 = 12 станет истинным высказыванием?
Если запишем (∀x) x 2 + 4 = 12 – это ложное высказывание, т.к., например, при x=0 оно не выполняется.
Если запишем (∃x) x 2 + 4 = 12 – это истинное высказывание, т.к., например, при \(\mathrm>\), оно выполняется.
Если запишем (∃x!) x 2 + 4 = 12 – это ложное высказывание, т.е. решений у данного уравнения не одно, а два: \(\mathrm=2\sqrt<2>>\)
Ответ: квантор существования ∃.

Источник

Предикаты и кванторы

Вы будете перенаправлены на Автор24

Понятие предиката

Предикатом в программировании является функция, которая принимает один или более аргументов и возвращает значения булева типа.

Предикат называется тождественно-истинным, если на любом наборе аргументов он принимает истинное значение:

Предикат называется тождественно-ложным, если на любом наборе аргументов он принимает ложное значение:

Предикат называется выполнимым, если хотя бы на одном наборе аргументов он принимает истинное значение.

Примеры предикатов

Таким образом, предикатом является все то, что утверждается или отрицается о субъекте суждения.

Готовые работы на аналогичную тему

Операции над предикатами

Рассмотрим применение операций алгебры логики к предикатам.

Логические операции:

Над предикатами помимо логических операций можно выполнять квантовые операции: применение квантора всеобщности, квантора существования и т.д.

Кванторы

Чаще всего используют кванторы:

В математической логике существует понятие связывание или квантификация, которые обозначают приписывание квантора к формуле.

Примеры применения кванторов

С помощью квантора всеобщности можно записать следующие ложные высказывания:

который будет иметь вид:

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Для записи истинных высказываний используем квантор существования:

Запись будет иметь вид:

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Таким образом, предикат можно превратить в высказывание, если поставить перед предикатом квантор.

Операции над кванторами

Для построения отрицания высказываний, которые содержат кванторы, применяется правило отрицания кванторов:

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Рассмотрим предложения и выделим среди них предикаты, указав область истинности каждого из них:

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата написания статьи: 07 04 2016

Источник

Предикат

Что такое предикат

Предикат (с латинского praedicatum означает «заявленное, упомянутое, сказанное») — понятие в логике, которым называют утверждение, высказанное о том или ином субъекте. Субъект высказывания — это та вещь или явление, о котором или которой делается утверждение.

Одна из важнейших особенности логики предикатов в том, что все общие имена (такие, как «цветок», «деревня»), знаки свойств («розовый», «большая») и знаки отношений («красивее», «роднее») рассматриваются как относящиеся к одной категории знаков: категории предикаторов (иначе говоря, предметно-истинных функторов).

Предикаторы, в свою очередь, показывают функции, у которых вероятные аргументы — это универсальные в рассмотрении объекты, а значения — истинные оценки. В классической логике они называются «истина» и «ложь». К примеру, возьмем предикатор «человек», который представляет функцию, определяемую как истина каждым отдельным человеком, а каждым отличным от человека существом — как ложь.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Другой пример : функция, которая соответствует предикатору «больше», сопоставляет истину каждой паре объектов или субъектов, один из которых больше. Например, такая пара, как «слон, мышь». Но всем остальным парам, по типу «мышь, слон» и «мышь, мышь», такая функци будет сопоставлять оценку «ложь».

Предикаторы могут быть:

Логические операции над предикатами

Так как предикаты принимают два значения, «истина» и «ложь» (1 и 0), к ним можно применить все операции алгебры логики.

Представим, что в неком множестве N определены два предиката P(x) и Q(x). Рассмотрим все операции с ними по-отдельности.

Область истины в этом случае — объединение областей истинности обоих утверждений.

Область истины здесь — дополнение множества истинности утверждения P(x) до множества N, иначе говоря \(I_overline

=N\I_P=CI_P.\)

Кванторные операции над предикатами

Прежде чем изучить квантовые операции, нужно разобраться, что из себя представляет сам квантор.

Квантор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание.

Кванторы впервые были определены немецким математиком Готлобом Фреге. Он упомянул их в своей работе «Begriffsschrift» («Исчисление понятий», 1879 года). Однако сам термин был изобретен английским логиком Чарльзом Пирсом в 1885 году. Вместе со словом «квантор» он ввел также и термин «квантификация», который означает измерение качеств признаков.

Обозначение кванторов

Символическое обозначение кванторов придумал итальянский математик Дж. Пеано в 90-е годы XIX века. Выглядят эти символы так:

\(\forall\) — «для любого», «для каждого», «для всех»;

\(\exists\) — «существует», «найдётся».

! – «единственный»;

: – «такой, что»;

| – «такой, что».

Знак «:» обычно используется в формулировках определений или теорем, которые записываются с помощью кванторов. Знак «|» применяется в определениях множеств.

Виды кванторов

Квантор общности \(\forall\)

Оно истинно только в том случае, когда \(P(x)\) — тождественно истинен. В ином случае данное высказывание ложно.

Оно истинно только в том случае, когда одноместный предикат \(P(x, a_2, …, a_n)\) на множестве \(N_1\) тождественно истинен. В противном случае оно ложно.

Квантор существования \( \exists\)

Примеры применения

Использование предикатов

Использование кванторов

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Пусть предикат «x кратно 5». Тогда с помощью квантора общности можно записать ложные высказывания:

В этом случае решение будет выглядеть так:

Чтобы обозначить истинные высказывания, используем квантор существования:

В записи оно будет выглядеть так:

На множестве x простых чисел существует предикат: «Простое число является нечетным». Если мы поставим перед предикатом слово «любое», то получим ложное высказывание «Любое простое число является нечетным». Если мы поставим перед предикатом слово «существует», то получим истинное высказывание «Существует простое число, которое является нечетным».

Так, предикат можно превратить в высказывание, если поставить перед ним квантор.

Источник

Что такое предикат: определение и примеры

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Что такое предикат? Это слово встречается в лингвистике, математике, философии и программировании. Но не может же быть так, что в этих столь разных науках это слово имеет одинаковое значение? Математическая логика дает свою, особую трактовку этого термина. Начнем с нее.

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Предикат в математике

В математической логике предикат обычно понимается как функция P: X → <правда, ложь>, называемая предикатом X. Однако предикаты имеют много разных применений и интерпретаций в математике и логике, и их точное определение, смысл и использование будут варьироваться от теории к теории. Так, например, если теория определяет понятие отношения, то предикат является просто характеристической функцией, иначе известной как индикаторная функция отношения. Однако не все теории имеют отношения или основаны на теории множеств, поэтому нужно быть осторожным с правильным определением и семантической интерпретацией предиката.

Правда или ложь

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Свойства объектов

Предикаты в математической логике также широко используются, чтобы говорить о свойствах объектов, определяя набор всех объектов, имеющих общее свойство. Так, например, когда P является предикатом X, иногда можно сказать, что P является свойством X. Аналогично, обозначение P (x) используется для обозначения предложения или утверждения P относительно объекта переменной Х. Множество, определенное P (x), записывается как и является множеством объектов, для которых P истинно.

Простым видом предиката (П) является булево выражение, и в этом случае входы в выражение сами являются значениями, объединенными с использованием булевых операций. Булево выражение со множеством истинности предиката является более сложным явлением.

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Формальное определение

Предикат в грамматике

Существует два конкурирующих понятия предиката в теориях грамматики. Конкуренция между этими двумя концепциями породила путаницу в отношении использования термина «предикат» в теориях грамматики. Так что такое предикат? В этой статье рассматриваются оба эти понятия.

Первое понятие относится к традиционной грамматике, которая имеет тенденцию рассматривать предикат как одну из двух основных частей предложения, другая часть является предметом. Цель предиката состоит в том, чтобы завершить представление о предмете, например, что он делает или что из себя представляет.

Второе понятие было получено из работы в исчислении предикатов (логика предикатов, логика первого порядка) и является заметным в современных теориях синтаксиса и грамматики. В этом подходе предикат предложения в основном соответствует главному глаголу и любым вспомогательным средствам, которые сопровождают главный глагол. В то же время его аргументы (например, фразы существительные) находятся за пределами предиката.

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

В традиционной грамматике

Понятие П в традиционной грамматике вдохновлено пропозициональной логикой древности (в отличие от более современной логики предикатов). Предикат рассматривается как свойство, которое субъект имеет. Следовательно, предикат является выражением, которое может быть истинным. Таким образом, выражение «движется» верно для всего, что движется. Это дает ответ на вопрос, что такое предикат.

Такое классическое понимание предикатов было принято более или менее непосредственно в латинской и греческой грамматиках, и оттуда оно попало в грамматику английского и русского языков, где применяется непосредственно к анализу структуры предложения. Это понимание П также используется в англоязычных словарях.

Субъект и предикат

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

В синтаксисе

Синтаксический П указывает синтаксическую обоснованность применения произведения в формальной грамматике и аналогичен семантическому предикату, который определяет семантическую действительность применения произведения. В своей первоначальной реализации синтаксические предикаты имели форму «(α)?» и могли появляться только на левом краю произведения. Необходимым синтаксическим условием α может быть любой допустимый контекстно-свободный фрагмент грамматики.

Более формально синтаксический предикат представляет собой форму производственного пересечения, используемого в спецификациях парсера или в формальных грамматиках. В этом смысле термин имеет значение математической функции индикатора. Если p1 и p2 являются производственными правилами, язык, сгенерированный как p1, так и p2, является их заданным пересечением.

Размышляющие грамматики выражений (PEGs), изобретенные Брайаном Фордом, расширяют эти простые П, позволяя им появляться где угодно в пределах производства наравне с «не предикатами». Более того, Форд изобрел процедуру разбора для обработки этих грамматик в линейном времени.

Этот подход реализуется в ANTLR версии 3, которая использует детерминированные конечные автоматы для просмотра. Это может потребовать тестирования предиката для выбора между синтаксическими переходами (так называемый «пред-LL (*)» синтаксический анализ).

В современных теориях синтаксиса

Большинство современных теорий синтаксиса и грамматики берут свое начало в теории исчисления предикатов, связанных с Готлобом Фреге. Это понимание видит предикаты как отношения или функции, стоящие над аргументами. Они служат либо для назначения свойства одному аргументу, либо для связи двух или более аргументов друг с другом. Предложения состоят из предикатов и их аргументов (и дополнений) и являются, таким образом, структурами предикатного аргумента. В соответствии с ними данный П рассматривается как связывание его аргументов с большей структурой.

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

В логике

Логика первого порядка, также известная как исчисление предикатов первого порядка и логика предикатов, представляет собой набор формальных систем, используемых в математике, философии, лингвистике и информатике. Логика первого порядка использует квантованные переменные над объектами и позволяет использовать предложения, содержащие переменные. Это отличает его от логики высказываний, которая не использует кванторы или отношения.

Логика первого порядка

Подобные теории, как правило, является частью логики первого порядка вместе с определенной областью дискурса, по которой варьируются квантифицированные переменные. Иногда теория понимается в более формальном смысле, а это всего лишь набор предложений в логике первого порядка.

Используемые прилагательные отличают логику первого порядка от логики высших порядков, в которой есть П, имеющие определяющие предикаты или функции в качестве аргументов, или в которых разрешены один или оба квантора предикатов или кванторы функций. В теориях первого порядка предикаты часто связаны с множествами. В интерпретируемых теориях более высокого порядка их можно интерпретировать как множества. Нечто похожее используется и в определении предиката в программировании. Это не удивительно, ведь математика стала своего рода сырьем для этой науки.

Теоретическая часть

Существует много дедуктивных систем для видов суждений и логики первого порядка, которые являются как звуковыми (все доказуемые утверждения верны во всех моделях), так и полными (утверждения, которые верны для всех моделей, являются доказуемыми). Хотя отношение логического следствия разрешимо лишь наполовину, в автоматизированной теореме, доказанной в логике первого порядка, достигнут значительный прогресс. Логика первого порядка также удовлетворяет нескольким металогическим теоремам, которые делают ее пригодной для анализа в теории доказательств, такой как теорема Левенхайма-Сколема и теорема о компактности.

Что такое предикаты в ставках. Смотреть фото Что такое предикаты в ставках. Смотреть картинку Что такое предикаты в ставках. Картинка про Что такое предикаты в ставках. Фото Что такое предикаты в ставках

Логика первого порядка является стандартом для формализации математики в аксиомах и изучается в основах математики. Арифметика Пеано и теория множеств Цермело-Френкеля являются аксиоматизациями теории чисел и теории множеств, соответственно, являются частью логики первого порядка. Однако теория первого порядка не имеет возможности однозначно описывать структуру с бесконечной областью, например натуральные числа. Системы аксиом, которые полностью описывают эти две структуры (то есть системы категориальной аксиомы), могут быть получены в более сильных формах логики, таких как логика второго порядка.

Основы логики первого порядка были разработаны независимо Готлобом Фреге и Чарльзом Сандерсом Пирсом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *