Планиметрия (от лат. planum — «плоскость», др.-греч. μετρεω — «измеряю») — раздел евклидовой геометрии, изучающий двумерные (одноплоскостные) фигуры, то есть фигуры, которые можно расположить в пределах одной плоскости.
Первое систематическое изложение планиметрии впервые было дано Евклидом в его труде «Начала».
Содержание
Изучение в школьном курсе
При систематическом изучении школьного курса геометрии обычно начинают с изучения планиметрии, а затем приступают к изучению стереометрии, изучающей пространственные фигуры. Основными понятиями школьного курса планиметрии являются точка, прямая, плоскость и расстояние (между двумя точками или от точки до точки), а также некоторые общематематические понятия, такие, как множество, отображение множества на множество и некоторые другие.
Содержание школьного курса из года в год несколько меняется, однако его ядро остаётся в целом неизменным. Планиметрия содержит:
Были попытки излагать обе части геометрии (планиметрию и стереометрию) вместе, слитно, изучая плоские и пространственные фигуры одновременно.
ПЛАНИМЕТРИЯ — (от лат. planus плоский, и греч. metreo меряю). Часть геометрии, занимающаяся исследованием и измерением фигур на плоскости. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПЛАНИМЕТРИЯ от лат. planus, плоский, и… … Словарь иностранных слов русского языка
ПЛАНИМЕТРИЯ — ПЛАНИМЕТРИЯ, планировать и пр. см. план. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля
ПЛАНИМЕТРИЯ — ПЛАНИМЕТРИЯ, подраздел ГЕОМЕТРИИ, в которой линии, углы и фигуры представлены в двухмерной форме, т.е. на плоскости. В планиметрии действуют аксиомы ЕВКЛИДА … Научно-технический энциклопедический словарь
ПЛАНИМЕТРИЯ — ПЛАНИМЕТРИЯ, планиметрии, мн. нет, жен. (от лат. planum плоскость и греч. metreo мерю) (мат.). Отдел элементарной геометрии, изучающий фигуры на плоскости. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ПЛАНИМЕТРИЯ — ПЛАНИМЕТРИЯ, и, жен. Часть геометрии, изучающая фигуры на плоскости. | прил. планиметрический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
планиметрия — сущ., кол во синонимов: 2 • геометрия (9) • математика (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
ПЛАНИМЕТРИЯ — ПЛАНИМЕТРИЯ, измерение площадей плоскостных фигур, очень часто применяемое в мед. физиол. исследовательских работах, преиму i щественно по отношению к площадям кривых, записанных на кимографе. Такое измерение можно производить или с помощью… … Большая медицинская энциклопедия
Главная > Учебные материалы > Математика: Планиметрия. Страница 1
1.Основные фигуры планиметрии
Прямые a и b параллельны, прямые а и с пересекаются в точке С, прямые b и с пересекаются в точке Е.
Углы обозначаются так:
∠SOP или ∠О или ∠(hk) или ∠α
Рис.1 Пример обозначения точек и прямых на плоскости.
1. Для любой прямой на плоскости существуют точки принадлежащие ей и не принадлежащие ей. Через любые две точки можно провести только одну прямую.
2. Из трех точек, лежащих на прямой, только одна лежит между двумя другими.
3. Любой отрезок имеет длину больше нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой точкой, лежащей на этом отрезке.
4. Любая прямая разбивает плоскость на две полуплоскости.
5. Любой угол имеет определенную градусную меру. Градусная мера любого угла равна сумме градусных мер углов, на которые он разбивается любым лучем, проходящим между его сторонами. Развернутый угол =180˚.
6. На любой полупрямой от ее начальной точки можно отложить только один отрезок определенной длины.
7. От любой полупрямой от ее начальной точки в заданную полуплоскость можно отложить только один угол определенной градусной меры, меньше 180˚.
8. Для любого треугольника, существует треугольник равный данному, относительно заданной полупрямой в заданном расположении.
9. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
Даны три прямые: а,b,c. Прямая a не параллельна b, а не параллельна с, прямая b не параллельна c. Доказать, что либо 3 прямые пересекаются в одной точке либо в 3-х точках.
Доказательство
Допустим 3 прямые имеют две точки пересесения. Пусть прямые а и b пересекаются в точке А. Рис.3
А прямая с пересекает прямую b в точке В.
Тогда прямая с пересекает прямую а либо в точке А, либо в точке В. Если прямая с пересекает прямую а в точке А, тогда точки А,В ∈с и прямая с совпадет с b. Т.е. две точки принадлежат одновременно двум прямым b и с. Согласно аксиоме 1 это невозможно, т.к. через две точки можно провести только одну прямую. Если прямая с пересекает прямую а в точке В, тогда т.А,В ∈а и прямая а совпадет с b. Следовательно через две точки проходят две прямые а и b, что тоже невозможно согласно аксиоме 1.
Рис.3 Пересечение 3-х прямых.
Отсюда следует, что прямая с может пересекать прямую а в третьей точке, так что:
3.Смежные углы
Два угла называются смежными, если одна сторона у них общая, а другие их стороны являются дополнительными полупрямыми. (Рис.4)
Сумма смежных углов равна 180°.
4.Вертикальные углы
Если стороны одного угла являются дополнительными полупрямыми сторон другого угла, то такие углы называются вертикальными. (Рис.6)
Теорема: Вертикальные углы равны.
Точно так же можно доказать, что β1 = β2.
Рис.6 Вертикальные углы.
5.Перпендикулярные прямые
Если две прямые пересекаются под прямым углом, то такие прямые называются перпендикурярными. (Рис.7)
Теорема: Через каждую точку прямой можно провести только одну прямую, перпендикулярную данной.
Доказательство.
Рис.7 Перпендикулярные прямые.
6.Признаки равенства треугольников
Первый признак равенства треугольников
Теорема: Если две стороны и угол между этими сторонами одного треугольника равны соответственно двум сторонам и углу между этими сторонами другого треугольника, то такие треугольники равны. (Рис.8)
Доказательство.
Рис.8 Первый признак равенства треугольников.
Второй признак равенства треугольников
Теорема: Если сторона и прилежащие к ней углы одного треугольника равны стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны. (Рис.9)
Доказательство.
Рис.9 Второй признак равенства треугольников.
Третий признак равенства треугольников
Теорема: Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны. (Рис.10)
Доказательство.
Рис.10 Третий признак равенства треугольников.
Пример 1
Даны три луча a,b,c. Точка О их общая начальная точка. Углы ab, ac, bc = 120°. Может ли прямая пересекать все три луча?
Доказательство:
Пусть даны три луча a,b,c с общей точкой О (Рис.11). Углы между ними составляют 120° (по условию задачи). И прямая е, пересекающая лучи а и b в точках А и В. Необходимо доказать, что прямая е не может пересечь все три луча а,b и с одновременно. Проведем прямую d через луч с. И отложим на прямой d луч с1 в противоположную сторону от луча с. Таким образом, на прямой d лежат два луча с и с1 с общей начальной точкой О, которые являются дополнительными полупрямыми, и лежащих в разных областях угла, образованного лучами a и b: внутренней области α и внешней β. Так как луч с1 проходит между сторонами угла, образованного лучами а и b, то он пересекает прямую е в точке Р. Так как любой луч, проходящий между сторонами угла из его вершины, пересекает отрезок, концы которого лежат на сторонах данного угла. Следовательно прямая d пересекает прямую е в точке Р полупрямой (лучем) с1. Но две прямые d и e могут пересекаться только в одной точке (точка Р), поэтому луч с не может пересекать прямую е, так как он лежит на прямой d. А следовательно прямая е не может перескать все три луча одновременно.
Рис.11 Задача. Даны три луча a,b,c.
Пример 2
Через точку О середину отрезка АВ проведена прямая а, перпендикулярная прямой АВ (рис.12). Доказать, что каждая точка Х на этой прямой удалена от точек А и В на равное расстояние.
Доказательство:
Рис.12 Задача на признак равенства треугольников.
Пример 3
Периметр равнобедренного треугольника равен 2 метра, а основание равно 0,6 метра. Найдите длину боковой стороны.
Решение:
Периметр треугольника равен 2 метра (Рис.13). Следовательно:
Но так как АВ = ВС (по условию задачи), то
Ответ: АВ = ВС = 0,7 метра.
Рис.13 Задача. Нахождение боковой стороны.
Пример 4
Периметр равнобедренного треугольника АВС с основанием АС равен 40 метров, Найдите длину медианы ВD, если периметр треугольника АВD составляет 30 метров.
Решение:
Так как треугольник АВС с основанием АС равнобедренный, то АВ = ВС. А так как BD медиана, то AD = DC (Рис. 14). Обозначим стороны треугольников как:
РABC = 2 x + 2 y = 40
Ответ: ВD = 10 метров.
Рис.14 Задача. Нахождение медианы BD.
Пример 5
Точки A, B, C и D лежат на одной прямой. Треугольники ABU1 и ABU2 равны. Докажите, что треугольники CDU1 и CDU2 тоже равны.
Доказательство:
По условию задачи треугольники ABU1 и ABU2 равны (Рис.15). Следовательно, BU1 = BU2. Угол ABU1 равен углу ABU2. Отсюда можно сделать вывод, что угол СBU1 равен углу СBU2, так как эти углы являются смежными с углами ABU1 и ABU2.
Таким образом, треугольники СBU1 и СBU2 равны по первому признаку равенства треугольников (по двум сторонам и углу между ними: BU1 = BU2, а сторона ВС у них общая и углы между ними равны). Следовательно, угол BСU1 равен углу BСU2 и СU1 = СU2. И следовательно, угол DСU1 равен углу DСU2, как смежные с углами BСU1 и BCU2.
А отсюда делается заключительный вывод, что треугольники СDU1 и СDU2 равны по первому признаку равенства треугольников (по двум сторонам и углу между ними: СU1 = СU2, а сторона СD у них общая и углы между ними равны).
Рис.15 Задача. На признаки равенства треугольников.
1. Геометрия – наука, занимающаяся изучением геометрических фигур (в переводе с греческого слово «геометрия» означает «землемерие»). 2.В планиметрии изучаются свойства фигур на плоскости. В стереометрии изучаются свойства фигур в пространстве. 3. Отрезок — это часть прямой, ограниченная двумя точками. Эти точки называются концами отрезка. 4. Угол — это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Лучи называются сторонами угла, а точка — вершиной угла. 5. Угол называется развёрнутым, если обе его стороны лежат на одной прямой. ( Развёрнутый угол равен 180°). 6. Две геометрические фигуры называются равными, если их можно совместить наложением. 7. Середина отрезка — это точка отрезка, делящая его пополам, т.е. на два равных отрезка. 8. Биссектриса угла — это луч, исходящий из вершины угла и делящий его на два равных угла. 9.Угол называется прямым, если он равен 90°. 10. Угол называется острым, если он меньше 90° (т.е. меньше прямого угла). 11. Угол называется тупым, если он больше 90°, но меньше 180°. (т.е. больше прямого, но меньше развёрнутого). 12. Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными. Сумма смежных углов равна 180°. 13. Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого. Вертикальные углы равны. 14. Две пересекающиеся прямые называются перпендикулярными, если они образуют четыре прямых угла. 15 Треугольник — это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой и трех отрезков, соединяющих эти точки. Точки называются вершинами, а отрезки — сторонами треугольника. 16. Если два треугольника равны, то элементы (т.е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника. 17. Теорема – утверждение, справедливость которого устанавливается путём рассуждений. Сами рассуждения называются доказательством теоремы. 18.Треугольник называется равнобедренным, если две его стороны равны. Равные стороны называются боковыми сторонами, а третья сторона — основанием равнобедренного треугольника. 19.Треугольник называется равносторонним, если все его стороны равны. 20.Аксиомы – это утверждения о свойствах геометрических фигур, которые принимаются в качестве исходных положений, на основе которых доказываются теоремы и строится вся геометрия. 21.(Аксиома) Через любые две точки проходит прямая, и притом только одна. 22. Если все три угла треугольника острые, то треугольник называется остроугольным. 23. Если один из углов треугольника тупой, то треугольник называется тупоугольным. 24. Если один из углов треугольника прямой, то треугольник называется прямоугольным.
Теоремы
Теорема 2 Первый признак равенства треугольников ( по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Доказательство:
Так как ∠A=∠A1, то можно треугольник A1B1C1 наложить на треугольник ABC так, чтобы точка A1 совместилась с точкой A, луч A1C1 наложился на луч AC, луч A1B1 — на луч AB. Так как AB=A1B1, то при таком наложении сторона A1B1 совместится со стороной AB, а значит, точка B1 совместится с точкой B. Аналогично, сторона A1C1 совместится со стороной AC, а точка C1 — с точкой C. Следовательно, сторона B1C1 совместится со стороной BC. Значит, при наложении треугольники полностью совместятся, поэтому ΔABC= ΔA1B1C1 (по определению). Что и требовалось доказать.
Теорема 3 Теорема единственности перпендикуляра, проведенного из произвольной точки к заданной прямой Из любой точки А, не лежащей на данной прямой, можно провести перпендикуляр к прямой. К тому же этот перпендикуляр единственный.
Дано: точка А не принадлежит прямой a.
Доказать: существует единственный отрезок АН, где АН- перпендикуляр к a из точки A.
2. Равные углы можно совместить наложением. При этом точка А перейдет в точку A1. ВА = ВA1(перегибание по прямой ВС).
3. Соединим точки А и A1. Получим точку Н. Углы ∠ВНА = ∠3, ∠ВНA1 = ∠4.
4. Так как ∠1 = ∠2,ВА = ВA1, BC- общая,то треугольники ВНА = ВНA1 по первому признаку равенства треугольников, то есть по углу и двум прилежащим сторонам. Из равенства треугольников следует равенство всех элементов. А значит, ∠3 = ∠4. Эти углы лежат против равных сторон. Два смежных равны только в случае, если каждый из них равен по 90°. А значит, АН ⊥ ВС. Мы доказали, что из точки А можно провести перпендикуляр к прямой a.
Единственность перпендикуляра, проведенного из точки А к прямой, докажем методом «от противного».
5. Предположим, что из точки А можно провести к прямой a два разных перпендикуляра.
Это невозможно, поскольку из разных точек прямой a проведены 2 перпендикуляра, которые имеют общую точку А. Мы получили противоречие, значит, наше предположение неверно. Из точки А можно провести лишь один перпендикуляр к прямой a. Теорема доказана.
Логическое построение планиметрии можно описать как последовательность следующих этапов.
Для школьного курса планиметрии определены:
К определяемым понятиям в геометрии относят отрезок, луч, треугольник и т. п., поскольку для них существуют объяснения «что это такое?». Определяемых понятий много. Приведем пример.
Аксиомы планиметрии
С целью установления правильности утверждения о свойствах той или иной геометрической фигуры прибегают к некоторым рассуждениям. Среди них есть такие, которые требуют доказательства (теоремы, задачи). Утверждение, истинность которого устанавливается путем доказательства и которое используется для доказательства других утверждений, называют теоремой.
Теорема состоит из: условия и вывода. Для доказательства теорем в школьном курсе геометрии в основном используют следующие методы:
Все рассуждения при доказательстве теорем произвольным методом основываются на аксиомах и известных доказанных фактах. Т.е. чтобы доказать теорему, разрешается пользоваться только основными свойствами простейших фигур (аксиомами) и свойствами, доказанными ранее (теоремами). Никакими другими свойствами фигур, даже если они представляются очевидными, пользоваться нельзя. Например, доказывая теоремы, можно использовать рисунки. Однако это лишь геометрическая модель содержания текста, выраженного словами, поэтому делать по рисунку выводы о свойствах фигур не разрешается.
Итак, геометрия, как и другие математические науки, строится по такой схеме: сначала следует ввести основные понятия, задать аксиомы (правила игры), а потом, опираясь на аксиомы, выводить другие факты (проводить игру по определенным правилам, не противоречащим друг другу).
Опорные факты курса планиметрии
Данный параграф предназначен для повторения курса планиметрии. Необходимость в нем обусловлена тем, что многие вопросы планиметрии на первом этапе обучения в школе рассматриваются несколько поверхностно. В следующих классах уровень изучения материала повышается, а вернуться и углубить пройденное удается не всегда. Поэтому мы систематизируем и обобщим основные сведения по планиметрии, условно разбив их на блоки: взаимное расположение прямых на плоскости; окружность и круг; многоугольники; треугольник и его элементы; выпуклые четырехугольники.
Взаимное расположение прямых на плоскости
Расстоянием от точкидо прямой(рис. 1.4) называют длину отрезка , перпендикулярного к прямой а, где точка — основание перпендикуляра. Расстояние от точки до любой точки прямой , отличной от точки , больше расстояния от точки до прямой . Т.е. любой отрезок , где -точка прямой , отличная от точки , длиннее отрезка .
Две различные прямые и , лежащие в одной плоскости, называются параллельными, если они не имеют ни одной общей точки. Коротко записывают . Если прямые не параллельны (), то они пересекаются ().
Вследствие пересечения двух прямых третьей прямой образуется восемь углов (рис. 1.5) (прямые а и Ь могут пересекаться, но прямая с через точку их пересечения не проходит):
Признаки параллельности прямых:
Окружность и круг
Кругом с центром и радиусом называют фигуру, образованную всеми точками плоскости, которые отдалены от точки на расстояние, не больше чем . Круг ограничен окружностью. Окружностью с центром и радиусом называют множество точек плоскости, отдаленных от точки на расстояние, равное (рис. 1.7, а).
Отрезки, которые соединяют центр с точками окружности и имеют длину , называют радиусами окружности (круга).
Части круга, на которые он делится двумя радиусами, называют круговыми секторами (рис. 1.7, б).
Через три точки, не лежащие на одной прямой, проходит единственная окружность. Диаметр, перпендикулярный к хорде, делит пополам эту хорду и обе дуги, которые стягиваются ею, и наоборот, если диаметр проведен через середину хорды, то он перпендикулярен этой хорде и делит пополам дугу, которую она стягивает (рис. 1.8, а).
Дуги, которые находятся между параллельными хордами, равны между собой. Равные дуги стягиваются равными хордами, и наоборот, равные хорды стягивают равные дуги.
Равные хорды одинаково отдалены от центра, и наоборот, хорды, одинаково отдаленные от центра, равны между собой. Большая из двух хорд меньше отдалена от центра, и наоборот, из двух хорд больше та, которая меньше отдалена от центра (рис. 1.8, а).
Каким может быть взаимное расположение прямой и окружности?
Рассмотрим окружность с центром и прямую (рис. 1.8, б). Из точки проведем перпендикуляр к прямой . Пусть -основание этого перпендикуляра. Возможны три случая: точка находится вне окружности , на окружности и внутри окружности . В каждом из этих случаев окружность и прямая либо не имеют общих точек, либо имеют одну общую точку ( — касательная к окружности), либо имеют две общие точки ( — секущая).
Прямая, проходящая через точку окружности, является касательной к окружности только тогда, когда она перпендикулярна радиусу, проведенному в эту точку. Если касательная параллельна хорде окружности, то точка касания делит пополам дугу, которую стягивает хорда (рис. 1.8, в; ).
Если из одной точки к окружности проведены две касательные, то отрезки этих касательных (от точек касания до данной точки) равны между собой, а луч, проведенный через данную точку и центр окружности, делит пополам угол между касательными (рис. 1.8, в; ).
Угол, образованный двумя касательными, называется описанным (рис. 1.8, в; ). Описаный угол измеряется полуразностью двух дуг, которые находятся между его сторонами .
Многоугольники
Многоугольник выпуклый, если он лежит в одной полуплоскости относительно каждой прямой, проходящей через две его соседние вершины (рис. 1.12, б, г, д).
Многоугольники называют равными, если при наложении они совмещаются. Для выпуклого -угольника сумма внутренних углов равна , а количество диагоналей любого-угольника равно . Если все стороны выпуклого многоугольника равны между собой и все углы также равны между собой, то его называют правильным (рис. 1.12, д). Если все вершины многоугольника лежат на некоторой окружности, он называется вписанным в эту окружность (рис. 1.13, а). Если все стороны многоугольника касаются некоторой окружности, он называется описанным вокруг окружности (рис. 1.13, б). По количеству сторон -угольника ему дают название. Например, треугольник , четырехугольник , пятиугольник и т.д.
Как построить правильный-угольник?
Если окружность разделить на равных частей и точки последовательно соединить отрезками, то получим правильный -угольник, вписанный в окружность (рис. 1.14).
Если окружность разделить на равных частей и через точки деления провести касательные к окружности, то отрезки этих касательных образуют правильный -угольник, описанный вокруг окружности (рис.1.15).
Вокруг каждого правильного многоугольника можно описать окружность или в каждый правильный многоугольник можно вписать окружность.
В правильном многоугольнике центры описанной и вписанной окружностей совпадают. Общий центр описанной и вписанной окружностей называется центром правильного многоугольника. Радиус вписанной окружности называют апофемой правильного многоугольника. Угол, образованный двумя радиусами, проведенными через смежные вершины правильного многоугольника, называется его центральным углом. Все центральные углы правильного многоугольника равны между собой и составляют , где — количество сторон (углов) многоугольника. В правильном -угольнике, как и в произвольном -угольнике, сумма всех углов (внутренних) составляет . Поэтому каждый его угол определяется по формуле .
Окружность, вписанная в правильный многоугольник, касается его сторон в их серединах. Центр окружности, вписанной в правильный многоугольник, является точкой пересечения серединных перпендикуляров его сторон (рис. 1.15).
Простейшим многоугольником является треугольник. В любой треугольник можно вписать окружность, причем только одну. На рисунке 1.16, изображена окружность с центром , вписанная в треугольник , — радиус. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис и находится внутри треугольника. Поскольку площадь треугольника находят по формуле , где — полупериметр треугольника, то отсюда , где — стороны треугольника. Центр окружности, вписанной в треугольник, равноудален от его сторон.
Можно ли в любой четырехугольник вписать окружность? Ответ. Нельзя. В четырехугольник можно вписать окружность только при условии, что суммы длин его противоположных сторон равны.
Вокруг произвольного треугольника можно описать окружность, притом только одну (см. рис. 1.16, б). Центр окружности, описанной вокруг треугольника, является точкой пересечения серединных перпендикуляров, проведенных к его сторонам. Центр окружности , описанной вокруг треугольника , равноудален от его вершин.
На рисунке 1.16, б изображена окружность с центром , описанная вокруг треугольника , — ее радиус. Если радиус описанной окружности , стороны треугольника, вписанного в окружность, и — полупериметр треугольника, то
Можно ли описать окружность вокруг произвольного четырехугольника? Ответ. Нельзя. Вокруг четырехугольника можно описать окружность только тогда, когда суммы противоположных углов равны 180°.
Треугольник и его элементы
Треугольником называется фигура, состоящая из трех точек, которые не лежат на одной прямой, и трех отрезков, которые попарно соединяют эти точки. Рассмотрим (рис. 1.17), в котором выделяют шесть основных элементов: три внутренних угла и три соответственно противолежащие им стороны .
Треугольник называется тупоугольным, прямоугольным или остроугольным, если его наибольший внутренний угол соответственно больше, равен или меньше 90°.
Треугольник называется равнобедренным, если у него две стороны равны (боковые стороны). Основанием равнобедренного треугольника является сторона, которая не равна ни одной из двух других равных сторон. Треугольник, все стороны которого равны, называется равносторонним, или правильным.
Соотношение между сторонами и углами треугольника:
Треугольник можно определить любой тройкой таких основных элементов: либо двумя сторонами и углом между ними, либо одной стороной и двумя углами, либо тремя сторонами.
Например, со сторонами можно задать так:
Соотношение между внутренними и внешними углами треугольника: любой внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Из трех отрезков можно образовать треугольник тогда и только тогда, когда любая его сторона меньше суммы и больше разности двух других его сторон. В любом треугольнике можно провести три медианы, три биссектрисы и три высоты.
Свойства биссектрисы угла треугольника: биссектрисы треугольника пересекаются в одной точке, которая лежит в середине треугольника и является центром вписанной в него окружности.
Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим к ней сторонам (рис. 1.18; — биссектриса, ).
Основные свойства медиан треугольника:
.
Медиана треугольника , проведенная к стороне , определяется через стороны треугольника по формуле:
Свойства равнобедренного треугольника: углы при основании треугольника равны; высота, проведенная к основанию, является также биссектрисой и медианой.
Свойства равностороннего треугольника: все углы равны (каждый угол равен 60°); каждая из трех высот является также биссектрисой и медианой; центр окружности, описанной вокруг треугольника, совпадает с центром окружности, вписанной в него.
Стороны прямоугольного треугольника и ( — гипотенуза) связаны между собой соотношением, называемым теоремой Пифагора: . Читается так: квадрат длины гипотенузы равен сумме квадратов длин катетов.
Свойства прямоугольного треугольника:
Выпуклые четырехугольники
Четырехугольник, противоположные стороны которого попарно параллельны, называется параллелограммом (рис. 1.20).
Если в четырехугольнике исполняется любое из таких условий:
Если боковые стороны трапеции равны между собой, такую трапецию называют равнобокой (рис. 1.21; ).
Равнобокая трапеция имеет такие свойства:
Отрезок, соединяющий середины боковых сторон трапеции, называется ее средней линией (рис. 1.21; — средняя линия, , ).
Средняя линия трапеции параллельна ее основаниям и равна их полусумме (рис. 1.21; ).
Задачи и методы их решения
Для геометрии закономерным является то, что введенные основные понятия и сформулированная аксиоматика составляют основу для новых утверждений. Однако справедливость последних необходимо доказывать путем определенных рассуждений, основывающихся на ранее доказанных утверждениях или аксиомах. Так формируются математические задачи.
Что такое математическая задача?
Можно ли утверждать, что для успешного решения геометрических задач и доказательства теорем достаточно свободно владеть всем теоретическим материалом?
Нет. Это не так. При хорошем знании теории следует овладеть еще и практическими навыками. А это возможно только в процессе решения задач, начиная с простейших и постепенно переходя к более сложным.
Математические задачи условно разделены на четыре вида, в соответствии с их требованиями: задачи на вычисление, доказательство, исследование и построение. С ними вы уже ознакомились в курсе планиметрии.
Приступая к решению задачи, следует выбрать метод. Методы делят:
Суть синтетического метода заключается в том, что, исходя из условия задачи или теоремы с использованием известных утверждений строится цепочка логических рассуждений, последнее из которых совпадает с требованием задачи. Приведем пример.
Пример №1
— биссектриса прямого угла -секущая, поэтому как внутренние разносторонние. — биссектриса, следовательно, . Таким образом, . В : , следовательно, — равнобедренный и . 1. Если , , то и . . 2. Если , и . . Ответ. 46 см или 50 см.
Эта задача является опорной, поскольку на такой идее строятся многие задачи и для параллелограмма, и для трапеции. У этих фигур биссектриса угла отсекает всегда равнобедренный треугольник.
Отметим, что сокращенное обозначение углов в виде . упрощает запись и экономит время, поэтому в таких случаях им пользоваться удобнее. Как видим, в процессе решения задачи 1 используются только известные геометрические утверждения и производятся соответствующие вычисления. Причем для каждой геометрической задачи такие рассуждения свои.
Суть аналитического метода состоит в том, что, исходя из требования (вывода) утверждения (теоремы или задачи) и опираясь на известное утверждение, строится цепочка логических рассуждений, которая показывает, что требование является следствием условия. Приведем пример.
Пример №2
Докажите, что середины сторон любого выпуклого четырехугольника являются вершинами параллелограмма.
— заданный четырехугольник. — середины соответствующих сторон. и — диагонали четырехугольника . В — средняя линия, следовательно, . В — средняя линия, следовательно, . Имеем: 1. и , следовательно, (по признаку параллельных прямых).
Чтобы решить задачу прямым методом, следует начать с анализа содержания задачи, от которого зависит выбор метода решения. Далее необходимо создать модель в виде рисунка и продолжить рассуждать над каждым действием, которые в совокупности образуют цепочку действий, ведущих либо от условия к требованию, либо от требования к условию.
Суть метода доказательства от противного состоит в том, что, имея утверждение, строим новое, возразив выводу данного. Формулируется утверждение. Исходя из вывода противоположного утверждения, строим цепочку истинных утверждений, пока не получим утверждение, которое противоречит либо условию, либо известной аксиоме или теореме, либо предположению. Таким образом приходим к выводу, что противоположное утверждение ошибочно, а потому исходное является истинным (тут действует логический закон: из двух противоположных утверждений одно истинное, другое ошибочное, третьего не дано). Рассмотрим пример.
Пример №3
Докажите утверждение: если две прямые параллельны третьей, то они параллельны между собой. Строим противоположное утверждение: существуют две прямые, параллельные третьей и не параллельные между собой.
Математическую задачу считают решенной, если:
Метод от противного называют непрямым методом решения математических задач.
Рассмотрим некоторые другие методы решения геометрических задач, которые делят на виды по использованию математического аппарата.
Алгебраический метод решения задач
Решая задачу алгебраическим методом, следует уделить внимание таким этапам:
Приведем другие примеры решения задач алгебраическим методом.
Пример №4
Периметр прямоугольного треугольника равен 36 см. Гипотенуза относится к катету как 5 : 3. Найдите стороны треугольника.
Дано: Найти:
Обозначим коэффициент пропорциональности через . Тогда или Ответ. 15 см, 9 см и 12 см.
Почему именно так? — единственное линейное измерение, с которым связаны стороны треугольника.
Пример №5
В параллелограмме диагонали равны 16 см и 20 см. Меньшая из них перпендикулярна к его стороне. Найдите площадь этого параллелограмма. Дано: — параллелограмм; .
Найти:
Почему именно так? Пусть — заданный параллелограмм, в котором и . Обозначим стороны параллелограмма: . Тогда имеем уравнение: , отсюда По теореме Пифагора из ():
, т.е. имеем: или . Составим систему уравнений:
Ответ.
В ходе решения этой задачи сначала выбираем формулу для вычисления площади параллелограмма. , где — основание параллелограмма, — высота, проведенная к нему. , поэтому является высотой параллелограмма, проведенной к сторонам или , длины которых неизвестны. Стороны параллелограмма связаны с его диагоналями формулой
Метод площадей
Пример №6
Стороны треугольника равны 13 см, 14 см и 15 см. Вычислите высоту, проведенную к стороне, которая имеет длину 14 см.
Пусть — стороны некоторого , причем , , .
и — высота, проведенная к средней стороне. По формуле Герона: а по другой формуле:
Ответ. .
Имея три стороны треугольника можно найти его площадь по формуле Герона: где С другой стороны, площадь треугольника можно найти по формулам: где — высота, проведенная к -й стороне. Осталось выбрать сторону треугольника и получить уравнение: в котором неизвестным будет .
Отметим, что хотя во время решения задачи 6 использовалось алгебраическое уравнение, более существенными в решении этой задачи являются рассуждения о площади фигуры. Поэтому такой метод получил название метод площадей.
Пример №7
Катеты прямоугольного треугольника равны 3 см и 6 см. Найдите длину биссектрисы прямого угла.
Дано: ; — биссектриса; , . Найти: .
Пусть — данный прямоугольный треугольник (), в котором , и -биссектриса прямого угла. Введем обозначение: . Найдем площадь двумя разными способами:
Площадь можно найти по формуле , где и — два катета. Биссектриса разделила на два треугольника, площади которых неизвестны. Их площади можно найти по формуле:
где и — стороны треугольника, а — угол между ними, т.е. .
Поскольку а биссектриса является неизвестной, то получим уравнение с одним неизвестным.
Метод векторов
Чтобы применить метод векторов к решению задачи, необходимо выполнить следующие действия:
Пример №8
Докажите, что середины сторон любого выпуклого четырехугольника являются вершинами параллелограмма.
Дано: — четырехугольник;
Доказать: — параллелограмм.
1. Переведем задачу на язык векторов, заменив отрезки векторами: .
2. Воспользуемся правилом треугольника для сложения векторов: . Учитывая, что ( — середина ) и ( — середина ), получаем равенство: Поэтому . Аналогично .
3. Поэтому . Т.е. векторы одинаково направлены, лежат на параллельных прямых и имеют одинаковую длину. Это доказывает, что — параллелограмм. Ч.т.д.
Переведя задачу на язык векторов, получаем требование задачи: доказать равность векторов и . Воспользовавшись правилом треугольника для нахождения суммы векторов, имеем:
Однако поэтому . Аналогично получаем, что . Таким образом, , что и требовалось доказать.
Метод координат
Решая задачу координатным методом, следует выполнить такие действия:
Методом координат чаще всего решают задачи:
Решая задачу методом координат, необходимо рационально выбрать систему координат: данную фигуру следует разместить относительно осей координат таким образом, чтобы как можно больше координат нужных точек равнялось нулю, а также одному и тому же числу. Например, координаты вершин прямоугольника можно выбрать так, как на рисунке 1.35:
Проиллюстрируем суть метода координат на примере.
Пример №9
Докажите, что когда у параллелограмма диагонали равны, то он прямоугольник.
Разместим параллелограмм в системе координат таким образом, чтобы его вершины имели координаты: , , причем .
По условию . Выразим расстояние между точками и , и через их координаты: Тогда, или , отсюда .
Поскольку , то, а это означает, что точка лежит на оси .
Поэтому угол прямой. Отсюда следует, что параллелограмм — прямоугольник.
Метод геометрических преобразований: метод поворота, метод симметрии, метод параллельного переноса, метод гомотетии.
Решая задачи методом геометрических преобразований, наряду с данными фигурами рассматривают новые, полученные из данных с помощью определенного преобразования. Выясняют свойства новых фигур, переносят эти свойства на данные фигуры, а затем находят способ решения задачи.
Говорят, что задачи, решенные методами векторов, координат, геометрических преобразований, площадей и другими методами, в которых используется больше свойств геометрических фигур, решены геометрическими методами.
Второй период — формирование геометрии в структурную систему. В VII в. до н.э. центром развития геометрии стала Греция. Древние геометры работали над систематизацией накопленных и новых знаний, устанавливали связи между геометрическими фактами, разрабатывали приемы доказательств. Значительный вклад в развитие математики, в частности геометрии, в этот период сделали Пифагор, Платон, Аристотель, Фалес, Анаксигор, Демокрит, Евклид. В книге «Начала» Евклида сформулированы понятия о фигуре, о геометрическом утверждении и доказательстве. Они остаются актуальными и сегодня.
Особенность начатого Н.И. Лобачевским периода в истории геометрии состоит в том, что после его открытия начали развиваться новые геометрические теории, новые «геометрии» и соответствующие обобщения самого предмета геометрии. В этот период возникло понятие о разновидностях пространства (термин «пространство» в науке может означать как обычное реальное пространство, так и абстрактное, «математическое», пространство). Некоторые теории создавались внутри евклидовой геометрии, как ее особые разделы, а позднее приобретали статус самостоятельных. Другие, подобно геометрии Лобачевского, вводили изменения аксиом и структурировались на основе этих изменений, обобщая и строя науку.
В школьном курсе мы изучаем геометрию Евклида. Перевел труд древнегреческого ученого «Начала» украинский математик Михаил Егорович Ващенко-Захарченко (1825-1912) в 1880 г. На основе этой книги написано множество учебников по геометрии. Например, преподавание геометрии в советской школе почти до 1982 г. осуществлялось по учебнику российского педагога-математика А.П. Киселева (1852-1940). В 1980-х годах украинским математиком А.В. Погореловым было создано новое учебное пособие. Его и сегодня можно найти в библиотеках общеобразовательных учебных заведений. Современная геометрия является многовекторной и стремительно развивается в совокупностях математических теорий, изучающих различные пространства и их фигуры. Значительный вклад в геометрию сделали и наши соотечественники: М.В. Остроградский, А.М. Астряб, А.П. Киселев, А.Д. Александров, А.Н. Колмогоров, А.В. Погорелов и др.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.