Что такое периодический закон менделеева

Современная формулировка периодического закона Д. И. Менделеева

Химические элементы, которых на данный момент насчитывается 118, подчиняются периодическому закону, сформулированному Дмитрием Ивановичем Менделеевым во второй половине XIX века.

Периодический закон Менделеева — в чём суть

Химические элементы, существующие в нашем мире, созданные самой природой или человеком, подчиняются правилу — Периодическому закону, который является основой химической науки.

Периодический закон — закон, который заключается в сопоставлении свойств химических элементов и их атомных масс (в современной формулировке — зарядов ядер).

После открытия в 1869 году Д. И. Менделеевым Периодического закона химических элементов данная наука перестала быть исключительно описательной. Стало возможным научное предвидение.

Суть закона Менделеева заключается в том, что свойства химических элементов, расположенных в таблице, а также свойства образуемых ими соединений находятся в периодической зависимости от зарядов ядер их атомов.

Периодический закон Менделеева был выражен в форме периодической системы элементов.

Периодическая система химических элементов — упорядоченное расположение в таблице химических элементов и их естественная классификация.

Периодическая система химических элементов Д. И. Менделеева состоит из 7 периодов — они представляют собой элементы, расположенные по горизонтали в порядке возрастания атомного номера (заряда ядра), и восьми групп (столбцов).

Периоды делятся на:

Каждый, кроме первого, период начинается со щелочного металла, а заканчивается благородным газом. Слева направо в каждом периоде ослабевают металлические и усиливаются неметаллические свойства, что связано с возрастанием числа электронов на внешнем уровне каждого химического элемента и увеличением прочности их связи с атомом.

Группы делятся на подгруппы:

Сверху вниз в главных подгруппах усиливаются металлические и слабевают неметаллические свойства.

В главных подгруппах вместе с усилением металлических свойств увеличивается устойчивость соединений элементов в низких степенях окисления. В побочных подгруппах с ослабеванием металлических свойств увеличивается устойчивость соединений с высокими степенями окисления.

История открытия, какое имело значение

Первооткрывателем периодического закона является Д. И. Менделеев. Днем, когда был открыт периодический закон, считается 1 марта (17 февраля) 1869 г., когда ученый закончил работу над основным трудом, описавшим данный закон — «Опыт системы элементов, основанной на их атомном весе и химическом свойстве». Тогда с ним за звание первооткрывателя боролся Юлиус Лотар Мейер, который также создал свою систему химических элементов.

Существует легенда о том, что Дмитрий Иванович Менделеев увидел Периодическую систему химических элементов во сне. Однако сам ученый ответил так:

«Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».

За основу своей классификации Д. И. Менделеев взял два свойства — химическое сходство элементов и их атомную массу. Ученый расписал на карточках основные свойства каждого элемента, после чего начал многократно переставлять их, чтобы найти закономерность.

Менделеев утверждал, что с ростом атомной массы элементов их свойства меняются, но не монотонно, как считали исследователи до него, а периодически. Свойства начинают повторяться после определенного количества элементов, однако они делают это не точь-в-точь, а с определенными изменениями.

Вторая версия Периодической системы появилась в 1870 году в статье «Естественная система элементов» в «Основах химии». Эта система больше похожа на современную: горизонтальных столбцов стало восемь, периоды остались в изначальном количестве, а каждый период был разбит на 2 ряда — для элементов основной и побочной подгрупп.

Для соблюдения периодичности химических элементов Д. И. Менделеев переписал атомные массы некоторых элементов, расставив их вопреки общим представлениям, а также оставил пустые клетки для неоткрытых элементов.

Первое определение химического закона звучало следующим образом:

Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, состоят в периодической зависимости от их атомного веса.

С помощью составленной периодической системы Д. И. Менделеев смог предсказать открытие новых элементов, а также целый ряд их химических и физических свойств. Подтверждение правильности систематизации появилось уже в 70-80-х годах XIX века, когда были открыт галлий, скандий и германий, которые точно встали в установленные Менделеевым места в Периодической таблице.

Формулирование Периодического закона имело большое значение для развития химии. С открытием Периодической системы химических элементов Д. И. Менделеева мир химической науки перестал быть исключительно описательным, но получил возможность прогнозирования будущих результатов.

Попытки систематизации до него

В середине XIX века научный мир знал о существовании 63 химических элементов. Исследователи предпринимали постоянные попытки систематизирования этих элементов для возможности дальнейшего прогнозирования в химической науке. Это было необходимо для преодоления определенного кризиса — невозможности открывать новые элементы и неимения твердой научной почвы для проведения опытов.

Первым установленную попытку систематизирования химических элементов предпринял Александр Эмиль Шанкуртуа — французский химик, который в 1862 году создал свою систему химических элементов, основанную на закономерности их атомных масс.

Он разместил элементы вдоль винтовой линии — «земной спирали» — которая обращала внимание на циклическую повторяемость свойств элементов.

Данная модель не привлекла внимания общественности, но стала существенным шагом к открытию Периодической системы. Александр Эмиль Шанкуртуа первым обратил внимание на закономерности между атомными массами химических элементов, но не учитывал многих других свойств. Поэтому претензии Шанкуртуа на приоритет в открытии Периодической системы, которые появились у химика после открытия Менделеева, нельзя считать обоснованными.

Джон Александр Ньюлендс в 1866 году предложил свой вариант Периодического закона, который назвал «законом октав». Модель закона напоминала менделеевскую, но при этом в формулировке существовали настойчивые попытки Ньюлендса найти взаимосвязь между химическими элементами и музыкальной гармонией.

По мнению Джона Александра Ньюлендса следовало размещать элементы по порядку возрастания атомных масс, при этом каждый восьмой элемент, как и каждая восьмая нота, должен был стать началом новой строчки. Элементы с одинаковым атомным весом, которые были установлены в то время, располагались под одним номером.

Главной ошибкой ученого был факт того, что некоторые элементы еще не были открыты. Из-за этого система рушилась.

Наиболее близкой к менделеевской системе был вариант Юлиуса Лотара Мейера, который был опубликован в 1864 году. За основу классификации химических элементов ученый взял валентность элементов. В то время еще не было установлено, что валентность не является постоянной для отдельно взятого элемента, из-за чего система не могла быть достоверно точной.

В 1869 году Мейер изменил свою таблицу на сходную с системой Менделеева, из-за чего в западной литературе считается одним из первооткрывателей Периодического закона, либо же ученым, открывшим его независимо от Менделеева.

Современная формулировка

В начале XX века в связи с проводимыми опытами по изучению строения атома было выявлено, что заряд ядра, а не атомная масса, влияет на периодичность изменений свойств элементов. Заряд ядра также влияет на атомный номер и число электронов, распределённых по электронным оболочкам химического элемента.

Современная формулировка в связи с этим отличается от первоначальной:

Свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений, находятся в периодической зависимости от величин зарядов ядер их атомов.

В современной химии главным вопросом остается проблема верхней границы Периодической системы химических элементов Д. И. Менделеева. Последним элементом в таблице на данный момент является элемент номер 118, синтезированный в Дубне в 2002 и 2005 годах, и получивший название Оганесон в 2016 году.

Развитие периодического закона Д. И. Менделеева

В 1869 году, когда был сформулирован Периодический закон, научный мир знал только о 63 элементах. На 2021 год известно 118 элементов, продолжаются попытки получения новых.

Формулировка Периодического закона означала лишь начало развития химии и знаний о периодичности свойств химических элементов. Несмотря на то, что изначально предсказания Менделеева были встречены со скепсисом, в итоге они стали основой для целого ряда химических открытий.

В развитии периодического закона принято выделять 2 периода:

Химический этап связан с открытием элементов Периодической системы, которые предсказал Менделеев:

Данное преобразование завершило химический этап развития Периодической системы.

Физический этап развития Периодического закона был начат в связи с тем, что химия не могла в полной мере объяснить причину периодичности свойств химических элементов. Физический этап развития Периодического закона привел к изменениям в естествознании, которые оказали на науку революционное влияние.

Дальнейшее изменение Периодической системы было связано с открытиями физики.

Физический этап можно условно разделить на периоды:

В связи с открытиями физики таблица начала менять свой изначальный облик.

Как изменяются свойства элементов в Периодической таблице

Свойства химических элементов в Периодической таблице зависят от положения каждого элемента в ряду (периоде) и столбце (группе).

Главной характеристикой химического элемента является заряд ядра его атомов.

Главными свойствами химических элементов, являются:

Слева направо в периоде происходит:

Сверху вниз в группе в главной подгруппе происходит:

Источник

Периодический закон

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением периодического закона.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Период, группа и электронная конфигурация

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы, то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Длина связи

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Основные и кислотные свойства

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Восстановительные и окислительные свойства

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды, ниже строка с летучими водородными соединениями.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру, для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим, что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене. Я расскажу вам, как легко их запомнить.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Периодический закон Менделеева, суть и история открытия

Периодический закон Дмитрия Ивановича Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделееваМенделеева — один из фундаментальных законов природы, который увязывает зависимость свойств химических элементов и простых веществ с их атомными массами. В настоящее время закон уточнен, и зависимость свойств объясняется зарядом ядра атома.

Закон был открыт русским ученым в 1869-м году. Менделеев представил его научному сообществу в докладе съезду Русского химического общества (доклад был сделан другим ученым, так как Менделеев был вынужден срочно выехать по заданию Вольного экономического общества Петербурга). В этом же году вышел учебник «Основы химии», написанный Дмитрием Ивановичем для студентов. В нем ученый описал свойства популярных соединений, а также постарался дать логическую систематизацию химических элементов. Также в нем впервые была представлена таблица с периодически расположенными элементами, как графическая интерпретация периодического закона. Всее последующие годы Менделеев совершенствовал свою таблицу, например, добавил столбец инертных газов, которые были открыты спустя 25 лет.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделееваЧто такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделееваЧто такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева
Алюминий гранулированныйЙод кристаллическийСера молотая

Научное сообщество далеко не сразу приняло идеи великого русского химика, даже в России. Но после того, как были открыты три новых элемента (галлий в 1875-м, скандий в 1879-м и германий в 1886-м годах), предсказанные и описанные Менделеевым в своем знаменитом докладе, периодический закон был признан.

Периодический закон Менделеева:

История открытия

Есть красивая легенда о том, что свою таблицу Менделеев увидел во сне, а утром проснулся и записал ее. На самом деле, это просто миф. Сам ученый много раз говорил, что созданию и совершенствованию периодической таблицы элементов он посвятил 20 лет своей жизни.

Все началось с того, что Дмитрий Иванович решил написать для студентов учебник по неорганической химии, в котором собирался систематизировать все известные на этот момент знания. И естественно, он опирался на достижения и открытия своих предшественников. Впервые внимание на взаимосвязь атомных весов и свойств элементов обратил немецкий химик Дёберейнер, который попытался разбить известные ему элементы на триады с похожими свойствами и весами, подчиняющимися определенному правилу. В каждой тройке средний элемент имел вес, близкий к среднему арифметическому двух крайних элементов. Ученый смог таким образом образовать пять групп, например, Li–Na–K; Cl–Br–I. Но это были далеко не все известные элементы. К тому же, тройка элементов явно не исчерпывала список элементов с похожими свойствами. Попытки найти общую закономерность позже предпринимали немцы Гмелин и фон Петтенкофер, французы Ж. Дюма и де Шанкуртуа, англичане Ньюлендс и Одлинг. Дальше всех продвинулся немецкий ученый Мейер, который в 1864-м году составил таблицу, очень похожую на таблицу Менделеева, но она содержала лишь 28 элементов, в то время как было известно уже 63.

В отличие от своих предшественников Менделееву удалось Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеевасоставить таблицу, в которую вошли все известные элементы, расположенные по определенной системе. При этом, некоторые клетки он оставил незаполненными, примерно вычислив атомные веса некоторых элементов и описав их свойства. Кроме этого, русскому ученому хватило смелости и дальновидности заявить, что открытый им закон является всеобщим законом природы и назвал его «периодическим законом». Сказав «а», он пошел дальше и исправил атомные веса элементов, которые не вписывались в таблицу. При более тщательной проверке, оказалось, что его исправления верны, а открытие описанных им гипотетических элементов стало окончательным подтверждением истинности нового закона: практика доказала справедливость теории.

Источник

Периодический закон

Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Поэтому современная формулировка периодического закона звучит так:

« Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов «.

Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.

Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.

Периодическая система химических элементов Д.И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра.

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.

В периодах слева направо возрастает число электронов на внешнем уровне.

В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.

2Na + H2 → 2NaH

В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до ртути Hg), а после первого переходного элемента лантана La следуют 14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппыглавные , или подгруппы А и побочные , или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:

В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.

В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.

У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп (литий, бериллий, натрий и др.). У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-VIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Номер периода соответствует числу заполняемых энергетических уровней.

Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).

Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе?

Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.

Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.

Орбитальный радиус – это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов.

Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.

Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.

Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.

Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:

Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.

В периодах слева направо орбитальный радиус атомов уменьшается.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

1) O 2) Se 3) F 4) S 5) Na

Решение:

В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.

Ответ: 142

Пример. Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома

1) K 2) Li 3) F 4) B 5) Na

Решение:

В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. Следовательно, правильный ответ: Li, B, F или 243.

Ответ: 243

Рассмотрим закономерности изменения радиусов ионов : катионов и анионов.

Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.

Радиус аниона больше радиуса соответствующего атома.

Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.

Изоэлектронные ионы – это ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.

Еще одно очень важное свойство атомов – электроотрицательность (ЭО).

Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.

Что такое периодический закон менделеева. Смотреть фото Что такое периодический закон менделеева. Смотреть картинку Что такое периодический закон менделеева. Картинка про Что такое периодический закон менделеева. Фото Что такое периодический закон менделеева

По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).

В главных подгруппах сверху вниз уменьшается электроотрицательность.

В периодах слева направо электроотрицательность увеличивается.

Пример. Из указанных в ряду химических элементов выберите три элемента-неметалла. Расположите выбранные элементы в порядке возрастания их электроотрицательности. Запишите в поле ответа номера выбранных элементов в нужной последовательности:

1) Mg 2) P 3) O 4) N 5) Ti

Решение:

Элементы-неметаллы – это фосфор Р, кислород О и азот N.

Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *