Фуга́сность — характеристика взрывчатого вещества. Служит мерой его общей работоспособности, разрушительного, метательного и иного действия взрыва. Основное влияние на фугасность оказывает объём газообразных продуктов взрыва.
Точное определение истинной работоспособности связано с техническими трудностями, поэтому обычно фугасность определяют и выражают в относительных единицах по сравнению со стандартными взрывчатыми веществами (как правило, кристаллическим тротилом). Для измеренной таким образом фугасности часто применяют термин тротиловый эквивалент.
Существует несколько способов определения фугасности.
Также фугасность определяют измерением работы взрыва на баллистическом маятнике.
Сравнительная фугасность некоторых взрывчатых веществ приведена в следующей таблице.
Взрывчатое вещество
Фугасность, см³
Тротиловый эквивалент
тротил кристаллический
285±7
1
аммонит № 6ЖВ
365
1,3
аммонал
400
1,4
аммонит скальный № 1 прессованный
450—460
1,6
гексоген
480
1,7
нитроглицерин
550
1,9
этиленгликольдинитрат
650
2,3
Содержание
Фугасное действие взрыва
Например при взрыве авиабомбы ФАБ-250 (масса ВВ 70-100 кг), фугасное действие создаёт избыточное давление в 10 атмосфер на дальности 6 м, скорость волны при этом равна ≈1000 м/с, что может разрушить кирпичную стену толщиной 0,5 м, а также смертельно опасно для человека, на расстоянии 14 м избыточное давление достигает около 1 атмосферы,а скорость волны 174 м/с, это опасно для человека,и возможно потребует госпитализации. [1]
При взрыве термобарических боеприпасов(окись этилена) объемом 33 л, ударная волна создает избыточное давление 20 атмосфер, такое же давление образуется при взрыве 250 кг тротила на расстоянии 8 м, на дистанции в 3-4 радиуса, т.е. 20-30 м, давление 1 атм, что вполне достаточно для разрушения самолета. [2]
Ядерная бомба
Для вычисления радиуса поражения ядерных взрывов используется формула
C коэффицент избыточного давления.
Для избыточного давления ≈0,204 атмосферы С=1, для 1,361 атмосферы С=0,28 [3]
См. также
Ссылки
Полезное
Смотреть что такое «Фугасность» в других словарях:
фугасность — сущ., кол во синонимов: 1 • работоспособность (6) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
Динамиты — Динамит (от греч. δυναμις сила) смесь веществ, представляющее собой абсорбент (например кизельгур), пропитанный в нитроглицерине. Также может содержать и другие компоненты (селитра и др). Вся масса обычно спрессовывается в цилиндрическую форму и… … Википедия
Нитроглицерин — См. также: Нитроглицерин (лекарственное средство) Нитроглицерин … Википедия
Шимоза — Основная статья: Тринитрофенол Шимоза тринитрофенол, смешанный с алюминием и упакованный в шёлк по методу японского артиллерийского инженера Масатики Симосэ (яп.) (1859 1911). Именно алюминий был отличительной чертой шимозы, делавшей… … Википедия
Угленит — Содержание 1 Угленит 1.1 Марка Угленит Э 6 1.1.1 Применение … Википедия
406-мм морская пушка Б-37 — У этого термина существуют и другие значения, см. Б 37. 406 мм морская пушка Б 37 Опытная установка пушки Б 37 в одност … Википедия
Взрывчатые вещества — (ВВ) химические соединения или смеси веществ, способные к быстрой химической реакции, сопровождающейся выделением большого количества тепла и образованием газов. Эта реакция, возникнув в какой либо точке в результате нагревания, удара,… … Большая советская энциклопедия
Гексоген — Гексоген … Википедия
Тринитротолуол — В Викисловаре есть статья «тринитротолуол» … Википедия
Что такое фугас? Какого типа бывают фугасные снаряды
Поражающий эффект
Фугасные боеприпасы действуют разрушительной силой газов разрывного заряда и частично силой удара в преграду. В соответствии с этим мощность фугасного снаряда определяется весом и качеством взрывчатого вещества, заключенного в его оболочке, что и определяет основное требование, предъявляемое к таким снарядам. Увеличение мощности фугасных снарядов в пределах одного калибра возможно путём увеличения ёмкости камеры для разрывного заряда и применения более мощного взрывчатого вещества.
Объём камеры снаряда можно увеличить удлинением цилиндрической части снаряда и уменьшением толщины его стенок. Однако длина цилиндрической части ограничена общей длиной снаряда, обусловленной его устойчивостью на траектории. Тем не менее длинная цилиндрическая часть является характерной особенностью фугасных снарядов. Уменьшение толщины стенок оболочки фугасного снаряда ограничено требованием его прочности при выстреле. В связи с этим применение фугасных снарядов в мортирах и гаубицах является более выгодным, нежели в пушках, из-за высоких давлений, развивающихся в последних при выстреле.
Химия и физика взрыва
Но всё же главной поражающей силой осколочно-фугасной гранаты является заключённое в ней взрывчатое вещество бризантного типа. После отработки заданной установкой задержки взрыватель срабатывает и по материалу взрывчатого вещества со скоростью около 6,7—7 км/с пробегает волна детонации — с физико-химической точки зрения комбинация из «обычной» сверхзвуковой ударной волны и инициированного ей фронта экзотермической химической реакции. По своей сути молекула тринитротолуола является метастабильным образованием с уже находящимися в её составе тремя нитрогруппами NO2, которые аккумулируют в себе значительную долю энергии и способны выделять активный кислород в окислительно-восстановительных реакциях. Проходящая при детонации тринитротолуола химическая реакция может быть записана в виде:
Как видно из формулы, в числе газообразных её продуктов присутствуют азот, вода и угарный газ. Малое содержание кислорода в молекуле тринитротолуола приводит к недостаточному окислению углерода (отсюда наличие угарного газа и сажи), поэтому очень часто в снаряжении осколочно-фугасных снарядов (ОФ-350 не исключение) используется аммотол — смесь тринитротолуола с нитратом натрия HNO3 (натриевой селитрой). Дополнительный кислород позволяет окислить углерод полностью и получить больше газообразных продуктов реакции. Но даже и без этого тринитротолуол является мощным взрывчатым веществом. Сделаем некоторые количественные оценки применительно к нашему случаю. 6 кг тринитротолуола при плотности 1,6 г/см³ занимают объём 3750 см³ (такой объём как раз имеет куб со стороной 15,3 см — весьма близко к калибру ОФ-530, хотя в действительности её камора имеет бутылкообразную, но без горлышка, осесимметричную форму). Молярная масса тринитротолуола составляет 0,227 кг/моль, таким образом количество тринитротолуола в каморе составляет 26,4 моль. Теперь воспользуемся химической формулой реакции и увидим, что каждые два моля тринитротолуола после детонации дают 3 моля азота, 5 молей водяного пара и 7 молей угарного газа. Как известно из химии, каждый моль газа при нормальных условиях занимает объём в 22,4 литра. В итоге 6 кг тринитротолуола порождают 39,6 молей азота, 66 молей водяного пара и 92,4 моля угарного газа, которые все вместе займут 4435 литров объёма при нормальных условиях. 1 литр равен 1 кубическому дециметру, т. е. 1000 см³. Посмотрим, насколько наша теоретическая оценка отклонилась от опытных данных — известно, что 1 кг тринитротолуола порождает 975 литров результирующих газов при нормальных условиях, т. е. 6 кг дадут 5850 л. Оценка оказалась с ошибкой порядка 20—25% вследствие условности, принятой в формуле химической реакции. Известно, что процесс самоокисления тринитротолуола более сложен, в его выходных продуктах есть также и газообразные оксиды азота, и углеводороды. Но в итоге образовавшиеся после детонации газы оказались зажатыми в объёме, который в 1560 раза меньше нужного, да ещё и нагретыми до температуры порядка 3700 °С. Используя известное из физики уравнение состояние идеального газа:
можно рассчитать их давление на стенки гранаты: p1 = 100 кПа, V1 = 5850 л, T1 = 288 K (15°С), V2 = 3,75 л, T2 = 3700 K. В итоге p2 ≈ 2004000 кПа ≈ 20 тыс. атм. А поскольку сильно сжатый газ далеко не идеален, то относительно реальной ситуации оценка оказалась на порядок заниженной: опыт даёт давление при разрыве заряда тринитротолуола давление в 10 раз большее — 200 тыс. атм. Такого давления корпус гранаты не выдерживает, боеприпас прекращает своё существование как единое тело и представляет собой осколки корпуса и плотный сгусток горячих газов, который стремится расшириться в своём объёме и прийти к термодинамическому равновесию с окружающей средой.
Конструкция
Фугасные снаряды обладают наиболее тонкостенными оболочками, высоким коэффициентом наполнения, высокой относительной массой разрывного заряда и малой относительной массой снаряда.
По конструктивному оформлению фугасные снаряды наземной артиллерии средних калибров бывают цельнокорпусными, с привинтной головкой или ввинтным дном и очком под головной взрыватель, а снаряды крупных калибров — со сплошной головной частью, ввинтным дном и очком под донный взрыватель или с привинтной головкой и ввинтным дном и очком под головной взрыватель. Снаряды крупных калибров, кроме того, могут иметь два очка: под головной и донный взрыватели; применением двух взрывателей обеспечиваются безотказность действия и полнота разрыва снаряда.
Малокалиберные фугасные снаряды в авиационной артиллерии впервые были применены немцами в 20- и 30-мм авиационных пушках во время Второй мировой войны. Корпус 20-мм снаряда тонкостенный, штампованный, с выдавленными на нём канавками для ведущего пояска и кернения дульца гильзы. Дно корпуса для повышения прочности при выстреле делается полусферической формы. Центрующих утолщений на корпусе нет, и центрование снаряда в канале ствола производится центрующим утолщением на взрывателе и ведущим пояском. Взрыватель соединяется со снарядом при помощи переходной втулки, закрепленной в корпусе.
Необходимая прочность таких снарядов при выстреле достигалась за счет применения корпуса из металла с высокими механическими свойствами[источник не указан 1036 дней] и его термической обработки.
Появление в 1940-х годах в малокалиберной авиационной артиллерии фугасных снарядов объясняется повышенным поражающим действием этих снарядов по сравнению с осколочными ввиду малой чувствительности современных самолетов к поражению осколками[источник не указан 1036 дней]. Поэтому следует считать целесообразным[когда?] всемерное повышение фугасности малокалиберных осколочных снарядов зенитной и авиационной артиллерии. Применение фугасных снарядов в наземной артиллерии целесообразно лишь в орудиях калибра от 120 мм и выше, так как незначительный вес разрывного заряда снарядов меньшего калибра не обеспечивает разрушения даже самых лёгких полевых укрытий[источник не указан 1036 дней].
Типы осколочных поражающих элементов
В качестве осколочных поражающих элементов в боеприпасах используется металл. Самый дешевый вариант для крупнокалиберной артиллерии использует чугун и сталь. Так называемая рубашка и корпус снаряда одновременно разрывается от действия ВВ и превращается в осколки. Ручные осколочные гранаты используют алюминий. Там важен малый вес боеприпаса. Специализированные противопехотные снаряды имеют стальные шарики. Наконец, самый экзотический и дорогой вариант – вольфрамовые шарики, стальные дротики и другие поражающие элементы. Эта конструкция используется в зенитных ракетах, а также в специализированных снарядах для поражения радиолокационных станций.
Взрыватель
Долгое время единственным используемым взрывателем являлся ударный взрыватель, срабатывавший при попадании снаряда в цель.
Значительным шагом вперёд стала разработка дистанционных взрывателей. Данные взрыватели подрывают боеприпас на определённом удалении от пушки, тем самым обеспечивая принципиально новые возможности применения ОФС. Наиболее значительными являются возможности уничтожения вертолётов из танковых пушек, возможность вести огонь на большую дальность по очень крутым траекториям, а также возможность уничтожения скоплений живой силы противника на открытой местности.
Российские танки Т-80УК и Т-90 оборудуются системой «Айнет», обеспечивающей подрыв ОФС в заданной точке траектории. Установка взрывателя проводится в автоматическом режиме, от наводчика требуется лишь замерить дальность лазерным дальномером. Практика показывает, что расход снарядов на каждую цель при этом уменьшается примерно вдвое.
Особенности осколочного снаряда
Взрыватели фугасных снарядов
Конструкция и принцип действия
Устройство бронебойно-фугасного снаряда
Эффективность воздействия по бронецелям, в американских документах, оценивается как до 1.3 от калибра.
Сколы с внутренней стороны брони от воздействия на неё бронебойно-фугасных снарядов
См. также
Смотреть что такое “Фугасный снаряд” в других словарях:
Снаряд калибра 76 мм и выше, предназначенный для стрельбы по небронированным морским и береговым целям, а также по живой силе противника. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь
Другое, устаревшее значение термина «снаряд» устройство, приспособление, конструкция … Википедия
При попадании в броню не передает кинетическую силу, а взрывается, нанося поверхностные повреждения (разбрасывает осколки с огромной скоростью, дополнительно нанося повреждения бронетехнике, контузит, ранит или убивает экипаж и сопровождающую технику пехоту), выводя из строя траки (гусеницы), повреждая триплекс – приборы наблюдения, производит повреждения брони, прогибы и микротрещины
Используется для обстрела места предполагаемой атаки, для облегчения прорыва обороны противника атакующими танковыми и мотопехотными подразделениями. Среди всех боеприпасов наиболее взрывоопасен.
Как танковый боеприпас входит в основной боекомплект танков Т-64 / / /84У /Т-90 и обычно в боеукладке составляет до 50 % от общего числа снарядов.
Взрыватель
При прямом попадании в уязвимые зоны (люки башни, радиатор моторного отделения, вышибные экраны кормовой боеукладки и т. д.) ОФС может вывести современный танк из строя. Также ударной волной и осколками, с большой долей вероятности, выводятся из строя приборы наблюдения, связи, вынесенное за броневой объём вооружение, прочие комплексы, устанавливаемые в большом количестве на современную бронетехнику.
Несмотря на то, что тактика ведения боевых действий претерпела существенные изменения, фугасы продолжают использоваться, как средство сдерживания наступления противника. Артиллерия всех калибров массово используют боеприпасы осколочного действия. На оснащении танковых подразделений и сил ПТО продолжают оставаться бронебойно-фугасные боеприпасы.
Какой тип снарядов использовать?
Основные правила при выборе между бронебойными и осколочно-фугасными снарядами:
Подробный обзор снарядов
Несмотря на то, что тактика ведения боевых действий претерпела существенные изменения, фугасы продолжают использоваться, как средство сдерживания наступления противника. Артиллерия всех калибров массово используют боеприпасы осколочного действия. На оснащении танковых подразделений и сил ПТО продолжают оставаться бронебойно-фугасные боеприпасы.
Исходя из этих данных, можно сделать вывод. Могущество фугасного снаряда определяется количеством и типом взрывчатого вещества. Увеличение количества ВВ приводит к увеличению калибра боеприпаса. Более мощные взрывчатые вещества позволяют добиться необходимого поражающего эффекта, не увеличивая калибр снаряда. К примеру, для бронебойно-фугасных противотанковых снарядов главное — не калибр, а определенный поражающий эффект. За счет большой пробивной способности такие снаряды могут проникать глубоко в броню, после чего фугасный заряд приводит к ее дальнейшему разрушению.
Что такое фугас? Какого типа бывают фугасные снаряды
Принцип действия состоит в распылении газо-воздушных смесей в воздухе с последующим подрывом образовавшегося облака аэрозолей. В результате взрыва возникает огромное давление.
Зажигательные боеприпасы — поражающее действие на людей, технику и др.
объекты основано на непосредственном воздействии высоких температур.
Зажигательные вещества подразделяются на:
● Составы на базе нефтепродуктов (напалмы)
● Металлизированные зажигательные смеси
● Термиты и термитные составы
Характеристика зажигательных боеприпасов:
● Составы на базе нефтепродуктов. НАПАЛМ— смесь бензина и порошка загустителя (90-97: 10-3). Хорошо воспламеняется даже на влажных поверхностях, способен создавать высокотемпературный очаг (1000 — 1200°С) с длительностью горения 5-10мин. Легче воды.
● Металлизированные зажигательные смеси. ЭЛЕКТРОН — сплав магния, алюминия и других элементов (96:3:1). Воспламеняется при 600С и горит ослепительно белым или голубоватым пламенем, достигая температуры 2800°С.
● Термитные составы — спрессованный порошок алюминия и окислов тугоплавких металлов. Горящий термит разогревается до 3000˚С.
● Белый фосфор — полупрозрачное твердое вещество, похожее на воск. Способен самовоспламеняться, соединяясь с кислородом воздуха. Температура пламени 900-1200˚С. Чаще всего используется как воспламенитель напалма и дымообразующее средство.
Разведывательно-ударные комплексы (РУК) — РУК объединяет два элемента: поражающие средства (самолеты, ракеты, оснащенные боеголовками самонаведения, способными проводить отбор нужных целей среди других объектов и местных предметов) и технические средства, обеспечивающие их боевое применение (средства разведки, связи, навигации, системы управления, обработки и отображения, информации, выработки команд).
Управляемые авиационные бомбы — предназначены для поражения малоразмерных целей, требующих большой точности попадания. Учитывая зависимость отвида и характера целей УАБ бывают бетонобойными, бронебойными, противотанковыми, кассетными и др.
Вероятность попадания УАБ не ниже 05.
По мощности ядерные боеприпасы делятся:(Сверхмалые (менее 1 кт),Малые (1-10 кт),Средние (10-100 кт),Крупные (100-1000 кг),Сверхкрупные (более 1000 кт))
Ударная волна (прямое или косвенное воздействие на организм)
Световое излучение – термические ожоги кожных покровов и глаз.
Проникающая радиация — поток нейронов и гамма-лучей.
Многочисленные формы механической работы продуктов взрыва удобно объединить в две основные группы: фугасные и бризантные.
Если энергетические характеристики ВВ определяют их потенциальные возможности, т.е. способность совершать некоторую работу (разрушение, метание и т.д.), то характеристики бризантности и фугасности позволяют оценить особенности выделения энергии, т.е. по их значению можно составить представление о самом процессе совершения работы продуктами взрыва.
Бризантность – это способность ВВ (точнее их газообразных продуктов взрыва) к местному разрушительному действию, которое является результатом резкого удара продуктов детонации по окружающей ВВ среде.
Бризантное действие ВВ проявляется лишь на близком расстоянии от места взрыва, где давление и плотность энергии газообразных продуктов взрыва велики. Максимальный эффект бризантности проявляется при непосредственном контакте заряда ВВ с окружающей средой, при условии распространения детонационной волны в направлении перпендикулярном преграде. Внешнее проявление бризантности заключается в дроблении среды. Опыт показывает, что бризантное действие зависит от энергетических характеристик ВВ, их плотности, скорости детонации и давления газообразных продуктов взрыва на фронте детонационной волны (иногда говорят «детонационное» давление).
Многие исследователи предлагали характеристики для оценки бризантности. Каст предложил вначале бризантность определять (ВП) по формуле
, (вт/м 3 ), (2.45)
где П – потенциал ВВ (Дж/кг),
Позже Каст предложил заменить потенциал на силу (¦) равную ¦=RТвзр и принять, что время взрыва t обратно пропорционально скорости детонации (D). С учетом этого можно записать
Снитко, учитывая, что между П и f нет прямой пропорциональности, предложил вместо П использовать теплоту взрыва QV, а время взрыва выразить не только через скорость детонации (D), но и через линейный размер заряда lо,например его длину:
, ( ). (2.47)
В – называется энергетическим напряжением при взрыве.
Формулы (2.45-2.47) применяются при количественной оценке бризантности. Однако они все носят до некоторой степени условный характер. Для оценки бризантности часто используют экспериментальные характеристики.
Наиболее простым и распространенным методом испытания на бризантность является проба на обжатие свинцовых столбиков (проба Гесса, см. рис.2.9). Для испытания применяются свинцовые столбики (2) диаметром 40 мм и высотой 60 мм. Свинцовый столбик располагают на массивной стальной плите (1) в вертикальном положении. На столбик помещают стальную пластинку (3) толщиной 10 мм и диаметром 41 мм, на которую устанавливается заряд (4) испытываемого ВВ массой 50г в бумажной оболочке диаметром 40 мм. При взрыве заряда ВВ (инициирование детонационным шнуром (5)) свинцовый столбик деформируется. Мерой бризантности ВВ является величина обжатия, т.е. разность высот столбика до и после обжатия:
где h1– высота столбика до взрыва, равная 60 мм,
П.Ф.Похил и М.А.Садовский рекомендуют оценивать бризантность (В) величиной а. Функция «а» учитывает усиление сопротивления столбика по мере обжатия:
где D h – величина обжатия столбика, т.е. бризантность, h1– высота столбика до обжатия, h2 – высота столбика после обжатия.
а- до взрыва, б- после взрыва
При испытании ВВ с низкой детонационной способностью пробу Гесса несколько изменяют, помещая ВВ в стальные кольца в количестве 100 г, при этом несколько (
2 раза) увеличивается длина заряда. При малой восприимчивости ВВ к капсюлю-детонатору для возбуждения детонации применяют шашки из прессованного тетрила массой 5 г.
Для приближения лабораторных условий опыта к производственным Л.И.Бароном, Б.Д.Росси и С.П. Левчиком предложен метод оценки бризантного действия промышленных ВВ по дроблению кубиков горной породы (см. рисунок 2.11).
Обычно определяют суммарный массовый выход (в%) фракции крупностью 5-7 мм.
1- забойка, 2- заряд ВВ, 3- кубик из горной породы
В качестве меры фугасности в теоретических расчетах используют потенциал (или величину потенциальной энергии) П (Е) ВВ или его удельную энергию U1. Опыт показывает, что, кроме потенциала П (Е) или удельной энергии U1, на фугасное действие оказывают существенное влияние такие характеристики, как удельный объем и состав газообразных продуктов взрыва. Для практической оценки фугасности (относительной работоспособности) используют так называемую пробу на расширение свинцовой бомбы (проба Трауцля).
Стандартная проба – это цилиндр размером 20х20 см 2 с осевым отверстием диаметром 2,5 и высотой 12,5 см. Исследуемый заряд массой М=10 г помещается на дно канала бомбы и засыпается сухим кварцевым песком, выполняющим роль забойки. За меру работоспособности Вв принимается приращение объема полости в кубических сантиметрах (DV) за вычетом расширения, производимого детонатором (Vд):
Величины бризантности В (мм) a и фугасности Аф (см 3 ) приведены ниже.
В настоящее время для оценки работоспособности применяют метод по воронке выброса и метод по тротиловому эквиваленту.
где q – масса заряда, необходимая для выброса единицы объема грунта необходимого по так называемым нормативным воронкам выброса (r/Г=1).
Тротиловый эквивалент – это относительная величина, показывающая, какой массе тротила эквивалентна единица массы исследуемого ВВ по интенсивности, образуемой при взрыве ударной волны:
кТ = . (2.51)
Интенсивность определяют по величине изменения давления на фронте ударной волны.
Для простоты иногда кТ характеризуют отношением теплоты взрыва исследуемого ВВ к теплоте взрыва тротила.
* М*- средняя молекулярная масса продуктов взрыва
Дата добавления: 2018-02-15 ; просмотров: 3665 ; Мы поможем в написании вашей работы!