что такое фокус собирающей линзы
Линза. Виды линз. Фокусное расстояние.
теория по физике 🧲 оптика
Мы уже познакомились с явлением преломления света на границе двух плоских сред. Но на практике особый интерес представляет явление преломления света на сферических поверхностях линз.
Линза — прозрачное тело, ограниченное сферическими поверхностями.
Какими бывают линзы?
По форме различают следующие виды линз:
Выпуклые линзы тоже имеют разновидности:
Разновидности вогнутых линз:
Тонкая линза
Мы будем говорить о линзах, у которых толщина l = AB намного меньше радиусов сферических поверхностей этой линзы R1 и R2. Такие линзы называют тонкими.
Тонкая линза — линза, толщина которой пренебрежимо мала по сравнению с радиусами сферических поверхностей, которыми она ограничена.
Главная оптическая ось тонкой — прямая, проходящая через центры сферических поверхностей линзы (на рисунке она соответствует прямой O1O2).
Оптический центр линзы — точка, расположенная в центре линзы на ее главной оптической оси (на рисунке ей соответствует точка О). При прохождении через оптический центр линзы лучи света не преломляются.
Побочная оптическая ось — любая другая прямая, проходящая через оптический центр линзы.
Изображение в линзе
Подобно плоскому зеркалу, линза создает изображения источников света. Это значит, что свет, исходящий из какой-либо точки предмета (источника), после преломления в линзе снова собирается в точку (изображение) независимо от того, какую часть линзы прошли лучи.
Оптическое изображение — картина, получаемая в результате действия оптической системы на лучи, испускаемые объектом, и воспроизводящая контуры и детали объекта.
Практическое использование изображений часто связано с изменением масштаба изображений предметов и их проектированием на поверхность (киноэкран, фотоплёнку, фотокатод и т. д.). Основой зрительного восприятия предмета является его изображение, спроектированное на сетчатку глаза.
Изображения разделяют на действительные и мнимые. Действительные изображения создаются сходящимися пучками лучей в точках их пересечения (см. рисунок а). Поместив в плоскости пересечения лучей экран или фотоплёнку, можно наблюдать на них действительное изображение.
Если лучи, выходящие из оптической системы, расходятся, но если их мысленно продолжить в противоположную сторону, они пересекутся в одной точке (см. рисунок б). Эту точку называют мнимым изображением точки-объекта. Она не соответствует пересечению реальных лучей, поэтому мнимое изображение невозможно получить на экране или зафиксировать на фотоплёнке. Однако мнимое изображение способно играть роль объекта по отношению к другой оптической системе (например, глазу или собирающей линзе), которая преобразует его в действительное.
Собирающая линза
Обычно линзы изготавливают из стекла. Все выпуклые линзы являются собирающими, поскольку они собирают лучи в одной точке. Любую из таких линз условно можно принять за совокупность стеклянных призм. В воздухе каждая призма отклоняет лучи к основанию. Все лучи, идущие через линзу, отклоняются в сторону ее главной оптической оси.
Если на линзу падают световые лучи, параллельные главной оптической оси, то при прохождении через нее они собираются на одной точке, лежащей на оптической оси. Ее называют главным фокусом линзы. У выпуклой линзы их два — второй главный фокус находится с противоположной стороны линзы. В нем будут собираться лучи, которые будут падать с обратной стороны линзы.
Главный фокус линзы обозначают буквой F.
Фокусное расстояние — расстояние от главного фокуса линзы до их оптического центра. Оно обозначается такой же букой F и измеряется в метрах (м).
В однородных средах главные фокусы собирающих линз находятся на одинаковом расстоянии от оптического центра.
Пример №1. Что произойдет с фокусным расстоянием линзы, если ее поместить в воду?
Вода — оптически более плотная среда, поэтому преломленные лучи будут располагаться ближе к перпендикуляру, восстановленному к разделу двух сред. Следовательно, фокусное расстояние увеличится. На рисунке лучам, выходящим из линзы в воздухе, соответствуют красные линии. Лучам, выходящим из линзы в воде — зеленые. Видно, что зеленые линии больше приближены к перпендикуляру, восстановленному к разделу двух сред, что соответствует закону преломления света.
Направим три узких параллельных пучка лучей от осветителя под углом к главной оптической оси собирающей линзы. Мы увидим, что пересечение лучей произойдет не в главном фокусе, а в другой точке (рисунок а). Но точки пересечения независимо от углов, образуемых этими пучками с главной оптической осью, будут располагаются в плоскости, перпендикулярной главной оптической оси линзы и проходящей через главный фокус (рисунок б). Эту плоскость называют фокальной плоскостью.
Поместив светящуюся точку в фокусе линзы (или в любой точке ее фокальной плоскости), получим после преломления параллельные лучи.
Если сместить источник дальше от фокуса линзы, лучи за линзой становятся сходящимися и дают действительное изображение.
Когда же источник света находится ближе фокуса, преломленные лучи расходятся и изображение получается мнимым.
Рассеивающая линза
Вогнутые линзы обычно являются рассеивающими (лучи, выходя из них, не собираются, а рассеиваются). Это бывает если, поместить вогнутую линзу в оптически менее плотную среду по сравнению с материалом, из которого изготовлена линза. Так, стеклянная линза в воздухе является рассеивающей.
Если направить на вогнутую линзы световые лучи, являющиеся параллельными главной оптической оси, то образуется расходящийся пучок лучей. Если провести их продолжения, то они пересекутся в главном фокусе линзы. В этом случае фокус (и изображение в нем) является мнимым. Этот фокус располагается на фокусном расстоянии, равном F.
Другой мнимый фокус находится по другую сторону линзы на таком же расстоянии при условии, что среда по обе стороны линзы одинаковая.
Оптическая сила линзы
Оптическая сила линзы — величина, характеризующая преломляющую способность симметричных относительно оси линз и центрированных оптических систем, состоящих из таких линз.
Обозначается оптическая сила линзы буквой D. Единица измерения — диоптрий (дптр). Оптической силой в 1 дптр обладает линза с фокусным расстоянием 1 м.
Оптическая сила линзы равна величине, обратной ее фокусному расстоянию:
На рисунке показан ход двух лучей от точечного источника света А через тонкую линзу. Какова приблизительно оптическая сила этой линзы?
Линзы. Оптическая сила линзы
Содержание
Свет преломляется при переходе из одной среды в другую. Используя знания об этом явлении, ученые используют призмы во многих оптических приборах. С их помощью можно добиться нужного направления световых лучей.
Но призмы – не единственный инструмент в оптике. Вы точно когда-то слышали о таких приборах, как микроскоп, телескоп. Устройство ни одного из подобных приборов не обходится без линзы. Увеличительное стекло в лупе – это тоже линза.
В данном уроке вы узнаете определение линзы и познакомитесь с ее видами. Далее вы откроете для себя новое понятие – оптическую силу линзы. Мы рассмотрим единицы ее измерения и особенности расчета.
Линзы и их виды
Линза – это любое прозрачное тело, ограниченное с двух сторон сферическими поверхностями.
Разберем подробнее это определение. Для начала взгляните на рисунок 1.
Давайте представим две сферы (полых шара). Теперь сдвинем их в нашем воображении таким образом, чтобы одна как бы наползала на другую (как на рисунке 1, а). Мы получим объемную область их пересечения. На рисунке мы смотрим на эти сферы сбоку. Область пересечения сфер отмечена голубым цветом.
Объем, находящийся в этом пересечении – и есть форма линзы. Если этот объем заполнить веществом, то получится сама линза. Также одна из ограничивающих линзу поверхностей может быть сферой бесконечно большого радиуса, т.е. плоскостью.
Бывает и другой вид линз, как на рисунке 1 (б). Для того чтобы его представить, мысленно поместите наши две воображаемые сферы на небольшом расстоянии друг от друга. Ограниченный по высоте объем между ними – еще одна форма линзы.
Как вы видите, эти формы существенно отличаются друг от друга. Поэтому говорят, что линзы бывают двух видов:
Выпуклая линза – это линза у которой края намного тоньше, чем середина.
Выпуклые линзы изображены на рисунке 2 (а). Такая форма образуется на пересечении двух сфер (или сферы и плоскости).
Вогнутые линзы (рисунок 2, б) имеют форму, которую образуют две непересекающихся сферы (или сфера и плоскость).
Вогнутая линза – это линза, у которой края толще, чем середина.
Обратите внимание, что форма линзы не обязательно задается двумя одинаковыми сферами – они могут быть разного размера (рисунок 3).
Оптическая ось – это прямая, проходящая через центры сферических поверхностей, ограничивающих линзу.
Оптический центр линзы – это единственная точка в линзе, проходя через которую лучи не преломляются.
Принцип действия линз
Принцип действия любой линзы основан на преломлении света. Давай рассмотрим это на примере выпуклой линзы.
Мысленно разобьем ее на отдельные мелкие части (рисунок 4). Каждую такую часть можно рассматривать, как призму.
Самую верхнюю часть линзы мы можем представить в виде треугольной призмы. Падающий на нее световой луч преломляется. На выходе он смещается в сторону основания призмы.
Все следующие части линзы представим как призмы, в основании которых лежат трапеции. Преломленный световой луч, прошедший через них, также будет смещаться к основанию.
Получается, что с помощью линз мы можем изменять направление распространения световых лучей. Призмы тоже позволяют сделать это. Но более сложная форма линз дает свои преимущества. Давайте узнаем, какие именно.
Фокус собирающей линзы
Направим на выпуклую линзу пучок параллельных лучей света, которые дополнительно будут параллельны оптической оси линзы (рисунок 5, а).
После преломления в линзе эти лучи пересекутся в одной точке, находящейся на оптической оси. Эта точка называется фокусом линзы. Каждая линза имеет два фокуса – по одному с каждой ее стороны.
На схемах собирающие линзы часто обозначают прямой со стрелками, как на рисунке 5 (б). При этом стрелки направлены друг от друга.
Мнимый фокус рассеивающей линзы
Теперь направим пучок параллельных лучей на вогнутую линзу. При этом световые лучи параллельны оптической оси линзы (рисунок 6, а).
Рассеивающие линзы на схематических изображениях и чертежах обозначают прямой со стрелками, направленными друг к другу (рисунок 6, б).
Оптическая сила линзы. Единица измерения оптической силы
Различные линзы одного вида будут преломлять лучи по-разному. Например, возьмем две собирающие линзы. Одна из них будет иметь более выпуклую поверхность (рисунок 7, а), чем вторая (рисунок 7, б).
Обратите внимание, что лучи, проходящие по оптической оси не преломились. Так произошло, потому что они прошли через оптические центры линз.
Из рисунка видно, что более выпуклая линза преломляет лучи сильнее. Также заметно, что у такой линзы фокусное расстояние короче. Поэтому она дает большее увеличение. Говорят, что оптическая сила ($D$) такой линзы больше.
Оптическая сила линзы – это величина, обратная ее фокусному расстоянию:
$D = \frac<1>$.
Единица измерения оптической силы – диоптрия ($дптр$).
1 диоптрия – это оптическая сила линзы, фокусное расстояние которой равно 1 м:
$1 \space дптр = 1 \frac<1> <м>= 1 \space м^<-1>$.
Расчет оптической силы
Исходя из определений диоптрии и оптической силы, мы можем сказать, что:
Оптическая сила может быть как положительной величиной, так и отрицательной в зависимости от вида линзы:
Оптика. Линза. Собирающая линза. Действительное и мнимое изображение.
Собирающая линза – это линза которая в средней части толще, чем по краям. Если на собирающую линзу попадает пучок лучей, параллельных главной оптической оси, то после преломления в линзе они собираются в одной точке F, которую обозначают как главный фокус линзы.
Посредствам линз получится делать увеличенные и уменьшенные изображения объектов.
Опыты демонстрируют: отчётливое изображение формируется, когда объект, линза и экран размещены на определённых расстояниях друг от друга. В зависимости от их взаимного положения изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.
Изображение, даваемое собирающей линзой, в зависимости от соотношения дистанции d от предмета до линзы и ее фокусным расстоянием F:
— d 2F – уменьшенное, перевернутое, действительное (предмет расположен за точкой двойного фокуса, пример – фотоаппарат, глаз).
Когда изображение действительное, его получится спроецировать на экран. В этом случае изображение будет видно из всякой точки комнаты, из которой виден экран.
Когда изображение мнимое, то его не получится спроецировать на экран, а можно только увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).
Собирающие и рассеивающие линзы
Наиболее важное применение преломления света – это использование линз, которые обычно делают из стекла. На рисунке вы видите поперечные разрезы различных линз. Линзой называют прозрачное тело, ограниченное сферическими или плоско-сферическими поверхностями. Всякая линза, которая в средней части тоньше, чем по краям, в вакууме или газе будет рассеивающей линзой. И наоборот: всякая линза, которая в средней части толще, чем по краям, будет собирающей линзой.
Для пояснений обратимся к чертежам. Слева показано, что лучи, идущие параллельно главной оптической оси собирающей линзы, после неё «сходятся», проходя через точку F – действительный главный фокус собирающей линзы. Справа показано прохождение лучей света через рассеивающую линзу параллельно её главной оптической оси. Лучи после линзы «расходятся» и кажутся исходящими из точки F’, называемой мнимым главным фокусом рассеивающей линзы. Он не действительный, а мнимый потому, что через него лучи света не проходят: там пересекаются лишь их воображаемые (мнимые) продолжения.
В школьной физике изучаются только так называемые тонкие линзы, которые вне зависимости от их симметричности «в разрезе» всегда имеют два главных фокуса, расположенные на равных расстояних от линзы. Если лучи направлять под углом к главной оптической оси, то мы обнаружим множество других фокусов у собирающей и/или рассеивающей линзы. Эти, побочные фокусы, будут находиться в стороне от главной оптической оси, но по-прежнему попарно на равных расстояниях от линзы.
Линзой можно не только собирать или рассеивать лучи. При помощи линз можно получать увеличенные и уменьшенные изображения предметов. Например, благодаря собирающей линзе на экране получается увеличенное и перевёрнутое изображение золотой статуэтки (см. рисунок).
Опыты показывают: отчётливое изображение возникает, если предмет, линза и экран расположены на определённых расстояниях друг от друга. В зависимости от них изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.
Ситуация, когда расстояние d от предмета до линзы больше её фокусного расстояния F, но меньше двойного фокусного расстояния 2F, описана во второй строке таблицы. Именно это мы и наблюдаем со статуэткой: её изображение действительное, перевёрнутое и увеличенное.
Изображения, даваемые собирающей линзой | |||
d 2F | уменьшенное | перевёрнутое | действительное |
Если изображение действительное, его можно спроецировать на экран. При этом изображение будет видно из любого места комнаты, из которого виден экран. Если изображение мнимое, то его нельзя спроецировать на экран, а можно лишь увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).
Опыты показывают, что рассеивающие линзы дают уменьшенное прямое мнимое изображение при любом расстоянии от предмета до линзы.
Тонкие линзы
Линза – это прозрачное тело, имеющая 2 сферические поверхности. Она, является тонкой, если ее толщина меньше радиусов кривизны сферических поверхностей.
Линза, имеющая большую толщину по краям, называется рассеивающей.
Главная оптическая ось – это прямая, которая проходит через центры кривизны O 1 и O 2 сферических поверхностей.
Побочные оптические оси – это прямые, проходящие через оптический центр.
Эта точка получила название главный фокус линзы.
Тонкая линза имеет два главных фокуса, которые располагаются симметрично на главной оптической оси по отношению к линзе.
Фокус собирающей линзы – действительный, а у рассеивающей – мнимый.
Главным свойством линз является способность передавать изображения предметов. Они, в свою очередь, бывают:
Построение изображения в линзах
Величина D – это оптическая сила линзы, равная обратному фокусному расстоянию.
Величина d и f тоже подчиняются определенным знакам:
Линейные размеры изображения зависят от положения предмета по отношению к линзе.
Выпуклая поверхность имеет положительный радиус кривизны, а вогнутая поверхность – отрицательным. Данная формула применима в изготовлении линз с заданной оптической силой.
Астрономическая труба Кеплера и земная труба Галилея
Тонкая линза имеет некоторые недостатки, которые не позволяют получать изображения высокого разрешения.
Аберрация – это искажение, которое возникает в процессе формирования изображения. В зависимости от расстояния, на котором проводится наблюдение, аберрации могут быть сферическими и хроматическими.
Смысл сферической аберрации в том, что при широких световых пучках лучи, находящиеся на далеком расстоянии от оптической оси, пересекают ее не в месте фокуса. Формула тонкой линзы действует лишь для лучей, которые находятся близко к оптической оси. Изображение удаленного источника, которое создается широким пучком лучей, преломленных линзой, размыто.
Современные оптические приборы оснащены не тонкими линзами, а сложными линзовыми системами, в которых есть возможность исключить некоторые искажения.
В таких приборах, как фотоаппараты, проекторы и т.д., используются собирающие линзы для формирования действительных изображений предметов.
Что представляет собой фотоаппарат
Фотоаппарат – это замкнутая светонепроницаемая камера, в которой изображение запечатленных предметов создается на пленке системой линз – объективом. На время экспозиции объектив открывается и закрывается с помощью специального затвора.