что такое физическая адсорбция

Физическая и химическая адсорбция

Адсорбция – поглощение веществ из растворов или газов поверхностным слоем твёрдого тела или жидкости. Движущей силой процесса является наличие на поверхности некомпенсированных сил межатомного взаимодействия, за счёт чего и притягиваются молекулы адсорбированного вещества – адсорбата. Происходит не только снижение поверхностной энергии, но и образование на поверхности различной по составу пленки.

Различают физическую и химическую адсорбцию веществ на поверхности. Возможны и промежуточные виды взаимодействий на границе раздела фаз.

Физическая адсорбция.Адсорбированный слой связан с поверхностью слабыми межатомными связями, например силами Ван-дер-Ваальса. Теплота физической адсорбции, как правило, невелика и редко превосходит несколько десятков кДж/моль (примерно 40 кДж/моль). Процесс физической адсорбции обратим, относится к неактивируемым, протекает очень быстро, как только молекулы адсорбата окажутся на поверхности твёрдого или жидкого тела. Наиболее часто физическую адсорбцию связывают с взаимодействием поверхности с газовой фазой. Количество адсорбированного газа снижается при уменьшении давления и возрастании температуры.

Простейшие уравнения мономолекулярной адсорбции предложены Генри и Ленгмюром. Уравнение Генри (так называемая изотерма Генри)

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция,(2.4)

Изотерма Генри представляет собой прямую линию 1 (рисунок 2.1, а). С увеличением давления Р рост адсорбированного мономолекулярного слоя замедляется. Молекула адсорбата испытывает трудности в закреплении на еще не занятом пространстве поверхности адсорбента.

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция

Изотерма приобретает выпуклый характер 2, а значение в стремится к единице (см. рисунок 2.1, а). Выпуклые изотермы описываются уравнением Ленгмюра

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция,(2.5)

где а – адсорбционный коэффициент, аналогичный по физическому смыслу константе к в уравнении (2.5).

Следует отметить, что уравнение Ленгмюра справедливо только для мономолекулярной адсорбции на однородной поверхности, возможностью притяжения молекул адсорбата между собой и их подвижностью вдоль поверхности адсорбента пренебрегают. При дальнейшем увеличении давления адсорбата происходит заполнение второго, третьего и других слоев. Процесс переходит в полимолекулярную адгезию.

Поверхность твёрдых адсорбентов в основном неоднородна. Одни участки благоприятны для адсорбции, другие – наоборот. С ростом давления адсорбата полимолекулярная адсорбция происходит одновременно по всей поверхности с различной степенью интенсивности.

Процесс адсорбции почти всегда сопровождается выделением теплоты, которое называют теплотой адсорбции. Прочность адсорбционного слоя пропорциональна теплоте адсорбции. При переходе к полимолекулярной адсорбции теплота адсорбции приближается к теплоте конденсации адсорбата.

Температурные условия оказывают большое влияние на протекание процесса физической адсорбции. Высокая подвижность молекул на поверхности при повышении температуры приводит к десорбции образующегося слоя. Дальнейшее повышение температуры может переводить физическую адсорбцию в химическую – хемосорбцию, имеющую более прочные связи.

На рисунке 2.1, б приведена качественная зависимость адсорбции газовой среды от температуры при постоянном давлении. При низких температурах изобара 1 описывает физическую адсорбцию. При достижении определенной температуры возможен процесс перехода физической адсорбции к хемосорбции. Происходит рост адсорбируемого вещества (кривая 2). При заполнении всей поверхности адсорбатом снова начинает снижаться количество адсорбированного вещества (кривая 3). Адсорбция в области 1 обратима, а в области 2 необратима. В случае охлаждения системы процесс переходит из области 3 в область 4.

Слабые междуатомные связи на поверхности при физической адсорбции, по-видимому, в малой степени способны уравновесить некомпенсированные связи поверхностных атомов. Соответственно этому не следует ожидать значительного снижения уровня свободной поверхностной энергии. При подготовке поверхности изделий для нанесения покрытий следует учитывать слабые связи физически адсорбированных веществ (твердых, жидких и газообразных).

Химическая адсорбция.Хемосорбция представляет собой процесс поглощения поверхностью жидкого или твердого тела веществ из окружающей среды, сопровождающийся образованием химических соединений. При хемосорбции выделяется значительное количество теплоты. Обычно теплоты хемосорбции лежат в пределах 80–125 кДж/моль. Взаимодействие кислорода с металлами (окисление) даёт значительно более высокие значения теплоты, достигающие 400 кДж/моль.

Подобно химическим реакциям хемосорбция требует для своего протекания значительной энергии активации. Следовательно, при увеличении температуры процесс хемосорбции ускоряется. Происходит так называемая активируемая адсорбция. Хемосорбция относится к избирательным процессам и зависит от химического сродства абсорбента и адсорбата, которое наряду с температурой определяет скорость протекания реакции. Например, при взаимодействии газов с чистыми металлами или металлоподобными поверхностями наблюдается исключительно быстрая хемосорбция, что связано со слабой насыщенностью связями поверхностных атомов. Хемосорбция протекает при минимальных значениях энергии активации. Хемосорбция на твёрдых поверхностях зависит от кристаллографической ориентации зёрен, наличия различных дефектов и др. Хемосорбция начинается на наиболее активных участках поверхности. Принято считать, что хемосорбция происходит до тех пор, пока вся поверхность не покроется мономолекулярным слоем адсорбата. По сравнению с физической адсорбцией хемосорбция чувствительна к давлению окружающей среды.

Наличие на поверхности хемосорбированных пленок в значительной мере уравновешивает некомпенсированные оборванные связи поверхностных атомов. Поверхностная энергия при этом достигает минимальных значений, что следует учитывать при подготовке поверхностей для нанесения покрытий. Для удаления хемосорбированных поверхностных соединений (загрязнений) требуются значительные энергетические воздействия.

Источник

Адсорбция

Адсорбция (лат. ad — на, при; sorbeo — поглощаю) — это, в широком смысле, процесс изменения концентрации у поверхности раздела двух фаз, а в более узком и употребительном — это повышение концентрации одного вещества (газ, жидкость) у поверхности другого вещества (жидкость, твердое тело).

Содержание

Основные понятия

Адсорбция и хемосорбция

На поверхности раздела двух фаз помимо адсорбции, обусловленной в основном физическими взаимодействиями (главным образом это Ван-дер-Ваальсовы силы), может идти химическая реакция. Этот процесс называется хемосорбцией. Чёткое разделение на адсорбцию и хемосорбцию не всегда возможно. Одним из основных параметров по которым различаются эти явления является тепловой эффект: так, тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата, тепловой эффект хемосорбции значительно выше. Кроме того в отличие от адсорбции хемосорбция обычно является необратимой и локализованной. Примером промежуточных вариантов, сочетающих черты и адсорбции и хемосорбции является взаимодействие кислорода на металлах и водорода на никеле: при низких температурах они адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать хемосорбция.

Схожие явления

В предыдущем разделе говорилось о случае протекания гетерогенной реакции на поверхности- хемосорбции. Однако бывают случаи гетерогенных реакций по всему объему, а не только на поверхности- это обычная гетерогенная реакция. Поглощение по всему объёму может проходить и под воздействием физических сил- этот случай называется абсорбцией.

Виды взаимодействийВзаимодействия только на поверхностиВзаимодействия по всему объёму
ФизическиеАдсорбцияАбсорбция
ХимическиеХемосорбцияГетерогенная реакция

Физическая адсорбция

Причиной адсорбции являются неспецифические (то есть не зависящие от природы вещества) Ван-дер-Ваальсовы силы. Адсорбция, осложнённая химическим взаимодействием между адсорбентом и адсорбатом, является особым случаем. Явления такого рода называют хемосорбцией и химической адсорбцией. «Обычную» адсорбцию в случае, когда требуется подчеркнуть природу сил взаимодействия, называют физической адсорбцией.

Физическая адсорбция является обратимым процессом, условие равновесия определяется равными скоростями адсорбции молекул адсорбтива P на вакантных местах поверхности адсорбента S * и десорбции — освобождения адсорбата из связанного состояния S − P:

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция;

уравнение равновесияя в таком случае:

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция,

где K — константа равновесия, [S − P] и [S * ] — доли поверхности адсорбента, занятые и незанятые адсорбатом, а [P] — концентрация адсорбтива.

Количественно процесс физической мономолекулярной адсорбции в случае, когда межмолекулярным взаимодействием адсорбата можно пренебречь, описывается уравнением Ленгмюра:

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция,

где что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция— доля площади поверхности адсорбента, занятая адсорбатом, что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция— адсорбционный коэффициент Ленгмюра, а P — концентрация адсорбтива.

Поскольку что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбцияи, соответственно, что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция, уравнение адсорбционного равновесия может быть записано следующим образом:

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция

Уравнение Ленгмюра является одной из форм уравнения изотермы адсорбции. Под уравнением изотермы адсорбции (чаще применяют сокращённый термин — изотерма адсорбции) понимают зависимость равновесной величины адсорбции от концентрации адсорбтива a=f(С) при постоянной температуре (T=const). Концентрация адсорбтива для случая адсорбции из жидкости выражается, как правило, в мольных либо массовых долях. Часто, особенно в случае адсорбции из растворов, пользуются относительной величиной: С/Сs, где С — концентрация, Сs — предельная концентрация (концентрация насыщения) адсорбтива при данной температуре. В случае адсорбции из газовой фазы концентрация может быть выражена в единицах абсолютного давления, либо, что особенно типично для адсорбции паров, в относительных единицах: P/Ps, где P — давление пара, Ps — давление насыщенных паров этого вещества. Саму величину адсорбции можно выразить также в единицах концентрации (отношение числа молекул адсорбата к общему числу молекул на границе раздела фаз). Для адсорбции на твёрдых адсорбентах, особенно при рассмотрении практических задач, используют отношение массы или количества поглощённого вещества к массе адсорбента, например мг/г или ммоль/г.

Значение адсорбции

Адсорбция — всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма — активированный уголь), силикагели, цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Адсорбция (особенно хемосорбция) имеет также важное значение в гетерогенном катализе. Пример адсорбционных установок приведён на странице азотные установки.

Установка для проведения адсорбции называется адсорбером.

Источник

Сорбционная очистка

Сорбция и адсорбция

Процесс сорбции представляет собой поглощение одной средой — жидкостью или твердым телом других окружающих сред — веществ, газов или других жидкостей. То вещество, которое поглощает окружающую среду — сорбент. Вещество, газ, или жидкость, которые поглощаются сорбентом, называют сорбатом или сорбтивом.

Явление сорбции подразделяют в зависимости от механизма поглощения одних сред другими на адсорбцию, абсорбцию, хемосорбцию и капиллярную конденсацию.

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция

Адсорбция и абсорбция различаются по тому, каким образом одно вещество распределяется в другом. При абсорбции поглощение и распределение вещества происходит по всему объему жидкого абсорбента. При адсорбции твердый, жидкий или газообразный сорбат скапливается на поверхности раздела фаз адсорбента (на поверхности твердого вещества или жидкости).

Понятия статической и динамической сорбции

При статической сорбции поглощаемое вещество в виде газа или жидкости контактирует или перемешивается с неподвижно расположенным сорбентом. Статическая сорбция реализуется в оборудовании с перемешивающими устройствами.

При динамической сорбции через слой сорбента пропускается поглощаемая подвижная жидкая или газообразная фаза. Динамическая сорбция реализуется в аппаратах с псевдоожиженным слоем и фильтрах разного типа.

В зависимости от вида сорбции можно выделить статическую и динамическую активность сорбента. Статическая активность сорбента — это количество поглощенного вещества, отнесенное к единице массы сорбента к моменту достижения равновесия. Условия, при которых достигается равновесие — постоянная температура жидкости и начальная концентрация вещества.

Динамическая активность сорбента определяется либо как время от начала пропускания поглощаемого вещества до его проскока, то есть выхода за слой сорбента, либо как предельное количество вещества, поглощенной на единицу объема или массы сорбента до момента проскока поглощаемого вещества через слой сорбента.

В адсорберах промышленного типа динамическая активность сорбента находится в диапазоне 45-90%.

В реальных условиях сорбционные процессы протекают по динамическому типу, так как это более приемлемо для автоматизации производственного процесса и его непрерывности.

Связь между количеством поглощенного сорбентом вещества и веществом, оставшимся в растворе в момент равновесия, подчиняется закону распределения.

Характеристики, которые влияют на скорость процесса адсорбции:

Процесс адсорбции состоит из трех этапов:

Внешняя и внутренняя диффузия

Считается, что адсорбция протекает с большой скоростью и стадия адсорбции не лимитирует скорость процесса. Поэтому в качестве лимитирующей стадии рассматривают либо внешнюю, либо внутреннюю диффузию. Могут быть случаи, когда процесс лимитируют обе диффузионные стадии.

В области внешней диффузии скорость переноса массы вещества зависит от величины турбулентности потока, то есть от скорости течения жидкости.

Интенсивность массопереноса во внутридиффузионной области во многом зависит от характеристик адсорбента — его вида, размера пор, формы и размера зерен, от размера молекул поглощаемого вещества, от коэффициента массопроводности.

Можно выявить условия, при которых очистка сточных вод адсорбцией идет с оптимальной скоростью.

Гидродинамический режим адсорбции должен лимитироваться в области внутренней диффузии. Сопротивление внутридиффузионной области уменьшается при подборе адсорбента с нужной структурой и с уменьшением размеров его зерен.

Приблизительные параметры скорости и диаметра зерна адсорбента принимаются равными 1,8 м/ч и dз= 2,5 мм соответственно. Если диаметр зерен dз меньше рекомендуемого, процесс лимитируется по области внешней диффузии, если больше — во внутридиффузионной области.

Источник

Чистая вода — дело техники!

ТЕХНОЛОГИИ ОЧИСТКИ ВОДЫ

ТЕХНОЛОГИИ ОЧИСТКИ ВОДЫ

ФИЛЬТРЫ СМЕШАННОГО ДЕЙСТВИЯ

АДСОРБЦИЯ

что такое физическая адсорбция. Смотреть фото что такое физическая адсорбция. Смотреть картинку что такое физическая адсорбция. Картинка про что такое физическая адсорбция. Фото что такое физическая адсорбция

В водоподготовке под термином «адсорбция» понимают процесс поглощения загрязнения из жидкости поверхностным слоем твердого тела. При этом поглощаемое вещество, которое еще находится в объеме жидкости, называют адсорбтивом, поглощенное, т.е. находящееся на поверхности твердого тела – адсорбатом. Твердое тело, которое поглощает вещество, называется адсорбентом. Процесс адсорбции складывается из трех стадий:

Наиболее широкое применение адсорбция имеет при глубокой очистке сточных вод от растворенных органических веществ (например, после биологической очистки), и значительно реже она используется для очистки от ионов тяжелых металлов. Основными областями применения адсорбционных процессов в очистке воды являются подготовка питьевой воды (деодорация, дехлорирование и т.д.), а также доочистка сточных вод. Использование адсорбции для удаления взвешенных веществ не оправдано и не практикуется. Блок адсорбционной очистки, как правило, включают в технологическую схему очистки воды на заключительной стадии, когда из исходной воды путем отстаивания, фильтрации, коагуляции уже удалена большая часть взвешенных частиц, эмульгированных масел и смол, вода также освобождена от крупных мицелл коллоидных веществ и обеззаражена.

Как правило, процесс адсорбции из воды необходим либо для ее очистки и обесцвечивания, либо для выделения из нее ценных компонентов. При этом размеры молекул поглощаемых из воды веществ варьируются в широких пределах: от небольших размеров молекул простых веществ (молекулярный вес до 150), до размеров молекул полимерного строения и коллоидных частиц.

Адсорбционная очистка эффективна во всем диапазоне концентраций примесей в воде, но на фоне других методов очистки больше всего ее преимущества проявляются при низких концентрациях загрязнений.

В зависимости от характера связи адсорбент–адсорбат, т. е. от свободной энергии взаимодействия между адсорбционным центром адсорбента и той частью молекулы, которая вступает в контакт с поверхностью адсорбента, различают: физическую адсорбцию и хемосорбцию.

При физической адсорбции молекулы поглощаемого вещества прикрепляются к поверхности твердого тела и удерживаются на ней под действием сил межмолекулярного взаимодействия (силы Ван-дер-Ваальса). В этом проявляется основное преимущество физической адсорбции – обратимость процесса. Т.е. при определенных условиях возможно выделение поглощенных веществ из адсорбента, например, адсорбент обрабатывают водяным паром, нагретыми инертными газами, органическими растворителями или водными растворами химических реагентов. Этот процесс называется десорбцией адсорбата, а по отношению к адсорбенту его регенерацией.

Десорбция адсорбата с поверхности раздела фаз в объем жидкости может протекать и процессе адсорбции. Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколько угодно долго, если неизменны внешние условия (давление, температура и состав системы).

Обратимость процесса физической адсорбции исключительно важна, особенно, если процесс десорбции предполагает повторное использование уловленного вещества или процесс регенерации адсорбента экономически выгоден (например, тогда, когда используется дорогостоящий адсорбент).

В основе процесса хемосорбции (химической адсорбции) лежит химическое взаимодействие между адсорбентом и адсорбируемым веществом, т.е. фактически при хемосорбции меняется химический состав поверхности адсорбента. Процесс хемосорбции, как правило, необратим, поскольку силы взаимодействия при этом значительно выше, чем при физической адсорбции. Очень высокой является и теплота хемосорбции, поэтому та энергия, которая необходима для взаимодействия хемосорбированной молекулы с молекулой другого вещества, находящего в воде, может быть существенно меньше энергии, необходимой для прямой реакции молекул этих двух веществ. Поэтому поверхность адсорбента может выступать в роли катализатора, увеличивающего скорость некоторых химических реакций. Примером такого каталитического взаимодействия может служит процесс дехлорирования воды на активированном угле.

В качестве поглотителей или адсорбентов применяют пористые твердые вещества, которые имеют развитую удельную поверхность, т.е. большую площадь поверхность на единицу массы. Удельная поверхность адсорбентов обычно составляет от 20 до 2000 м 2 /г, а их размер пор от 0,002 до 2 мкм. Поры по своему размеру подразделяются на три вида: макропоры размером 0,1–2 мкм, переходные поры (мезапоры) размером 0,004–0,1 мкм, микропоры размером менее 0,004 мкм. Макропоры и переходные поры играют, как правило, роль транспортных каналов, а сорбционная способность адсорбентов определяется в основном микропористой структурой.

При адсорбции из водных растворов происходит поглощение адсорбентом, как молекул поглощаемого вещества, так и воды. Таким образом, при очистке водных растворов происходит конкуренция двух видов межмолекулярных взаимодействий: гидратация молекул поглощаемого вещества, т.е. взаимодействие их с молекулами воды в растворе, и взаимодействие молекул поглощаемого вещества с адсорбентом.

Конкуренция процессов гидратации и адсорбции молекул загрязнителя и адсорбции молекул воды лежит в основе разграничения сорбентов для удаления из воды органических и неорганических веществ. Однако энергия взаимодействия адсорбента с многоэлектронными и, как правило, полярными молекулами органических веществ намного выше, чем та же энергия взаимодействия с молекулами воды. Поэтому органические молекулы размещаются вблизи «активных атомов» адсорбента, т. е. по периферии микропоры, а молекулы воды оттесняются в ее центральную область. В результате такого распределения молекул компонентов раствора в микропорах удельная адсорбция более сильно адсорбирующихся органических молекул пропорциональна сумме периметров микропор в единице массы адсорбента, т.е. так же, как и при адсорбции на поверхности мезопор и макропор. Это приводит к выводу о некой пропорциональности адсорбции в микропорах некой эффективной удельной поверхности адсорбента. В отличие от адсорбции в микропорах объем узких микропор заполняется молекулами преимущественно однокомпонентно, т. е. аналогично заполнению его при адсорбции паров органических веществ. Вследствие этого удельная адсорбция из растворов в узких микропорах пропорциональна не эффективной поверхности пор, а их объему.

Таким образом, при адсорбции из воды веществ с небольшими молекулами микропористая структура адсорбентов не будет значительно отличаться от структуры адсорбентов, которые используются для адсорбции газов и паров. Для веществ с большими молекулами, т.е. полимерного строения и/или с коллоидной степенью дисперсности, должны использоваться адсорбенты, обладающие хорошо развитой как микропористой, так и мезапористой структурой (переходной пористостью), которые позволят транспортировать большие молекулы внутрь зерна адсорбента.

Адсорбционная очистка вод может быть регенеративной, т. е. с извлечением вещества из адсорбента и его утилизацией, и деструктивной, при которой извлеченные из воды вещества уничтожаются вместе с адсорбентом. Эффективность адсорбционной очистки достигает 80—98 % и зависит от химической природы адсорбента, величины адсорбционной поверхности и ее доступности, от химического строения вещества и его состояния в растворе.

Наиболее известными адсорбентами являются активированные угли, которые получают в результате термической обработки и термического активирования различных природных материалов (каменный и бурый угли, древесина и отходы деревообработки, пластики и пр.) в строго контролируемой атмосфере: сушка, карбонизация при 500-600 о С и окисление при 850-1000 о С. В результате этого улетучивающиеся из материала продукты формируют в нем углеродный «скелет» и разветвленную систему пор, чем и объясняется высокоразвитая поверхность получаемого активированного угля.

Считается, что «хорошими» активированными углями являются те, которые имеют широкий спектр действия – на их поверхности адсорбируются большинство молекул органических веществ. При этом хуже всего удерживаются наиболее полярные молекулы, а также линейные молекулы очень малой молярной массы (простые спирты, наиболее легкие органические кислоты и т.п.). Молекулы с низкой полярностью, которые чаще всего являются ответственными за возникновение вкусов и запахов, а также молекулы с относительно высокой молярной массой по разным причинам хорошо адсорбируются активированными углями.

Неуглеродные полярные гидрофильные материалы – иониты, глины, силикагели, алюмосиликаты, цеолиты, оксиды и гидроксиды переходных металлов малопригодны для адсорбции органических веществ, так как величина энергии взаимодействия их с молекулами воды равна величине энергии сорбции молекул органических загрязнений или её превышает. Чаще всего такие сорбционные материалы используют для удаления из воды неорганических соединений, которые, как правило, находятся в ней в ионной форме.

Для адсорбционной очистки воды в промышленном и муниципальном водоснабжении наиболее широкое распространение получили насыпные (засыпные) фильтры с зернистой загрузкой, которые, как правило, состоят из корпуса, фильтрующего слоя, дренажной или распределительной системы, системы подачи на фильтр осветляемой воды и отвода очищенной и промывной воды.

Фильтрование воды через фильтрующий слой насыпного фильтра происходит под действием разности давлений на входе в фильтр и на выходе из него. Разность давлений воды до и после фильтрующего слоя называется потерей напора в фильтрующем слое. Потеря напора в начальный момент работы фильтра, называемая начальной потерей напора, равна потере напора при фильтровании чистой, не содержащей взвешенных веществ воды, через чистый фильтрующий слой. Начальная потеря напора в фильтрующем слое зависит от скорости фильтрования воды, ее вязкости, размера и формы пор фильтрующего слоя, его толщины.

По мере загрязнения адсорбционного фильтрующего слоя задерживаемыми из воды взвешенными веществами потеря напора возрастает до некоторой величины, характеризующей сопротивление предельно загрязнённого фильтрующего слоя. По достижении предельной потери напора или при ухудшении качества фильтрата нужно произвести очистку фильтрующего слоя очистить от накопившихся в нем загрязнений путем его промывки или другим способом. Такая промывка приводит к очистке поверхности адсорбента и только частичному восстановлению его адсорбционной способности. По мере заполнения пор адсорбента загрязняющими веществами его адсорбционная емкость снижается, и процесс адсорбционной очистки прекращается. Восстановление адсорбционной способности в насыпных фильтрах невозможно, поэтому адсорбент меняется на новый, а отработанный отправляется либо на регенерацию, либо на утилизацию.

Следует помнить, что процесс адсорбционной очистки воды надо проводить только с водой безопасной в микробиологическом отношении. Для этого перед адсорбционными фильтрами всегда следует использовать стадию обеззараживания воды любым приемлемым способом, который не повлияет в дальнейшем на стадию адсорбции.

Для автоматизации работы насыпных фильтров с зернистой загрузкой адсорбентами используются специальные блоки управления (фирм-изготовителей «FLECK»; «CLACK»; «FOBRITE»; «RUNXIN»), которые в автоматическом режиме обеспечивают регенерацию (промывку) фильтрующей среды в соответствие с требуемыми технологическими параметрами. При этом накопленные загрязнения и отходы, образовавшиеся при регенерации фильтра, сбрасываются в дренажную линию (канализацию). После проведения регенерации (промывки) блок управления автоматически переводит фильтр в рабочий режим.

Для осуществления процесса осветления воды мы предлагаем Вам использовать насыпные скорые фильтры серии AС, характеристики которых приведены на следующей странице.

Эффективность адсорбционной очистки воды на насыпных скорых фильтрах достаточно велика: достигает 85-90%. При этом в фильтрат может выделятся некоторое количество адсорбента в результате его истирания. Для проведения отдельных процессов очистки воды, например, процесса обратного осмоса и пр.) может потребоваться дополнительная очистка от этих взвешенных веществ. Для их удаления используется процесс микрофильтрации на патронных фильтрах со сменными фильтрующими элементами.

ПОСЛЕДНИЕ НОВОСТИ:

08.02.2018 Компания «Мировые Водные Технологии» создала новый раздел Реагентная обработка воды, процессы которой осуществляют путем внесения того или иного химического вещества (реагента) в обрабатываемую воду с целью изменения того или иного показателя качества воды до требуемой величины.

08.02.2018 Компания «Мировые Водные Технологии» создала новый раздел Реагентная обработка воды, процессы которой осуществляют путем внесения того или иного химического вещества (реагента) в обрабатываемую воду с целью изменения того или иного показателя качества воды до требуемой величины.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *