что такое фильтр низких частот
Фильтр низких частот
Фильтр ни́жних часто́т (ФНЧ) — электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (или подавляющий) частоты сигнала выше этой частоты. Степень подавления каждой частоты зависит от вида фильтра.
В отличие от него, фильтр высоких частот пропускает частоты сигнала выше частоты среза, подавляя низкие частоты.
Реализация фильтров нижних частот может быть разнообразной, включая электронные схемы, программные алгоритмы, акустические барьеры, механические системы и т. д.
Содержание
Примеры фильтров нижних частот
Для звуковых волн твёрдый барьер играет роль фильтра нижних частот — например, в музыке, играющей в другой комнате, легко различимы басы, а высокие частоты отфильтровываются (звук «оглушается»). Точно так же ухом воспринимается музыка, играющая в закрытой машине.
Электронные фильтры нижних частот используются в сабвуферах и других типах звуковых колонок, в системах передачи данных для отфильтровки высокочастотных помех, а также имеют большое число других применений.
Радиопередатчики используют низкочастотные фильтры для блокировки гармонических излучений, которые могут взаимодействовать с низкочастотным полезным сигналом.
Механические низкочастотные фильтры часто используют в контурах непрерывных систем управления в качестве корректирующих звеньев.
В обработке изображений низкочастотные фильтры используются для очистки картинки от шума и создания спецэффектов, а также в сжатии изображений.
Идеальный фильтр нижних частот
Идеальный фильтр нижних частот (sinc-фильтр) полностью подавляет все частоты входного сигнала выше частоты среза и пропускает без изменений все частоты ниже частоты среза. Переходной зоны между частотами полосы подавления и полосы пропускания не существует. Идеальный фильтр нижних частот может быть реализован лишь теоретически с помощью умножения входного сигнала на прямоугольную функцию в частотной области, или, что даёт тот же эффект, свёртки сигнала во временно́й области с sinc-функцией.
Однако такой фильтр практически нереализуем для большинства сигналов, так как sinc-функция имеет ненулевые значения для всех моментов времени вплоть до бесконечности. Его можно использовать только для уже записанных цифровых сигналов либо для идеально периодических сигналов.
Реальные фильтры для приложений реального времени могут лишь приближаться к идеальному фильтру.
Для RC фильтра, применяемого на линейном входе компьютера, обычно используются переменный резистор и конденсатор емкостью около 0,33 мкФ.
См. также
Ссылки
Полезное
Смотреть что такое «Фильтр низких частот» в других словарях:
фильтр низких частот — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN low pass filter … Справочник технического переводчика
фильтр низких частот — žemųjų dažnių filtras statusas T sritis automatika atitikmenys: angl. low pass filter vok. Tiefpaß, m; Tiefpaßfilter, n rus. фильтр низких частот, m pranc. filtre passe bas, m … Automatikos terminų žodynas
Фильтр высоких частот — Фильтр верхних частот (ФВЧ) электронный или любой другой фильтр, пропускающий высокие частоты входного сигнала, при этом подавляя частоты сигнала меньше, чем частота среза. Степень подавления зависит от конкретного типа фильтра. В отличие от ФВЧ … Википедия
Фильтр нижних частот — (ФНЧ) один из видов аналоговых или электронных фильтров, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (подавляющий) частоты сигнала выше этой частоты. Степень подавления каждой… … Википедия
фильтр верхних частот — Электрический частотный фильтр, имеющий полосу пропускания выше заданной частоты среза и полосу задерживания для более низких частот [ГОСТ 24375 80] фильтр верхних частот Фильтр, пропускающий сигналы с частотами выше граничной частоты и… … Справочник технического переводчика
Фильтр верхних частот — 1. Электрический частотный фильтр, имеющий полосу пропускания выше заданной частоты среза и полосу задерживания для более низких частот Употребляется в документе: ГОСТ 24375 80 … Телекоммуникационный словарь
Фильтр Саллена — Фильтр Саллена Кея один из типов активных электронных фильтров. Реализуется в виде простой схемы с двумя резисторами, двумя конденсаторами и активным элементом (например с операционным усилителем), представляя собой фильтр с… … Википедия
Фильтр Саллена-Кея — Фильтр Саллена Ки один из типов активных электронных фильтров. Реализуется в виде простой схемы с двумя резисторами, двумя конденсаторами и активным элементом (например с операционным усилителем), представляя собой фильтр с передаточной… … Википедия
Фильтр Чебышёва — Линейные электронные фильтры Фильтр Баттерворта Фильтр Чебышёва Эллиптический фильтр Фильтр Бесселя Фильтр Гаусса Фильтр Лежандра Фильтр Габора Править Фильтр Чебышёв … Википедия
ФИЛЬТР ЧАСТОТ — (англ. frequency filter) устройство, ослабляющее в сигнале определенные диапазоны частот; фильтр низких частот (англ. low frequency filter) ослабляет высокие частоты и пропускает низкие, тогда как фильтр высоких частот (англ. high frequency… … Большая психологическая энциклопедия
Электрический фильтр
Что такое электрический фильтр
Электрический фильтр — это устройство для выделения желательных компонентов спектра (частот) электрического сигнала и/или для подавления нежелательных. Для остальных частот, которые не входят в полосу пропускания, фильтр создает большое затухание, вплоть до полного их исчезновения.
Характеристика идеального фильтра должна вырезать строго определенную полосу частота и «давить» другие частоты до полного их затухания. Ниже пример идеального фильтра, который пропускает частоты до какого-то определенного значения частоты среза.
На практике такой фильтр реализовать нереально. При проектировании фильтров стараются как можно ближе приблизиться к идеальной характеристике. Чем ближе характеристика АЧХ к идеальному фильтру, тем лучше он будет исполнять свою функцию фильтрации сигналов.
Фильтры, которые собираются только на пассивных радиоэлементах, таких как катушка индуктивности, конденсатор, резистор, называют пассивными фильтрами. Фильтры, которые в своем составе имеют один или несколько активных радиоэлементов, типа транзистора или ОУ, называют активными фильтрами.
В нашей статье мы будем рассматривать пассивные фильтры и начнем с самых простых фильтров, состоящих из одного радиоэлемента.
Одноэлементные фильтры
Как вы поняли из названия, одноэлементные фильтры состоят из одного радиоэлемента. Это может быть либо конденсатор, либо катушка индуктивности. Сами по себе катушка и конденсатор не являются фильтрами — это ведь по сути просто радиоэлементы. А вот вместе с выходным сопротивлением генератора и с сопротивлением нагрузки их уже можно рассматривать как фильтры. Здесь все просто. Реактивное сопротивление конденсатора и катушки зависят от частоты. Подробнее про реактивное сопротивление вы можете прочитать в этой статье.
В основном одноэлементные фильтры применяются в аудиотехнике. В этом случае для фильтрации используется либо катушка, либо конденсатор, в зависимости от того, какие частоты надо выделить. Для ВЧ-динамика (пищалки), мы последовательно с динамиком соединяем конденсатор, который будет пропускать через себя ВЧ-сигнал почти без потерь, а низкие частоты будет глушить.
Для сабвуферного динамика нам нужно выделить низкие частоты (НЧ), поэтому последовательно с сабвуфером соединяем катушку индуктивности.
Номиналы одиночных радиоэлементов можно, конечно, рассчитать, но в основном подбирают на слух.
Для тех, кто не желает заморачиваться, трудолюбивые китайцы создают готовые фильтры для пищалок и сабвуфера. Вот один из примеров:
На плате мы видим 3 клеммника: входной клеммник (INPUT), выходной под басы (BASS) и клеммник под пищалку (TREBLE).
Г-образные фильтры
Г-образные фильтры состоят из двух радиоэлементов, один или два из которых имеют нелинейную АЧХ.
RC-фильтры
Думаю, начнем с самого известного нам фильтра, состоящего из резистора и конденсатора. Он имеет две модификации:
С первого взгляда можно подумать, что это два одинаковых фильтра, но это не так. В этом легко убедиться, если построить АЧХ для каждого фильтра.
В этом деле нам поможет Proteus. Итак, АЧХ для этой цепи
будет выглядеть вот так:
Как мы видим, АЧХ такого фильтра беспрепятственно пропускает низкие частоты, а с ростом частоты ослабляет высокие частоты. Поэтому, такой фильтр называют фильтром низких частот (ФНЧ).
А вот для этой цепи
АЧХ будет выглядеть таким образом
Здесь как раз все наоборот. Такой фильтр ослабляет низкие частоты и пропускает высокие частоты, поэтому такой фильтр называется фильтром высокой частоты (ФВЧ).
Наклон характеристики АЧХ
Давайте рассмотрим этот пример
Чем больше крутизна наклона прямой АЧХ, тем лучше избирательные свойства фильтра:
Фильтр, с характеристикой наклона в 24 дБ/октаву явно будет лучше, чем в 6 дБ/октаву, так как становится более приближенным к идеальному.
RL-фильтры
Почему бы не заменить конденсатор катушкой индуктивности? Получаем снова два типа фильтров:
АЧХ принимает такой вид:
Получили все тот же самый ФНЧ
АЧХ примет такой вид
Тот же самый фильтр ФВЧ
RC и RL фильтры называют фильтрами первого порядка и они обеспечивают наклон характеристики АЧХ в 6 дБ/октаву после частоты среза.
LC-фильтры
А что если заменить резистор конденсатором? Итого мы имеем в схеме два радиоэлемента, реактивное сопротивление которых зависит от частоты. Здесь получаются также два варианта:
Давайте рассмотрим АЧХ этого фильтра
Как вы могли заметить, его АЧХ в области низких частот получилась наиболее плоской и заканчивается шипом. Откуда вообще он взялся? Мало того, что цепь собрана из пассивных радиоэлементов, так она еще и усиливает сигнал по напряжению в области шипа!? Но не стоит радоваться. Усиливает по напряжению, а не по мощности. Дело в том, что мы получили последовательный колебательный контур, у которого, как вы помните, на частоте резонанса возникает резонанс напряжений. При резонансе напряжений, напряжение на катушке равняется напряжению на конденсаторе.
Все то же самое касается и ФВЧ фильтра
Как я уже сказал, LC фильтры называют уже фильтрами второго порядка и они обеспечивают наклон АЧХ в 12 дБ/октаву.
Сложные фильтры
Что будет, если соединить два фильтра первого порядка друг за другом? Как ни странно, получится фильтр второго порядка.
В приведенных схемах мы строили АЧХ фильтра без внутреннего сопротивления генератора а также без нагрузки. То есть в данном случае сопротивление на выходе фильтра равняется бесконечности. Значит, желательно делать так, чтобы каждый последующий каскад имел значительно бОльшее входное сопротивление, чем предыдущий. В настоящее время каскадирование звеньев уже кануло в лету и сейчас используют активные фильтры, которые построены на ОУ.
Разбор фильтра с Алиэкспресс
Для того, чтобы вы уловили предыдущую мысль, мы разберем простой пример от наших узкоглазых братьев. На Алиэкпрессе продаются различные фильтры для сабвуфера. Рассмотрим один из них.
Как вы заметили, на нем написаны характеристики фильтра: данный тип фильтра рассчитан на сабвуфер мощностью 300 Ватт, наклон его характеристики 12 дБ/октаву. Если соединять к выходу фильтра саб с сопротивлением катушки в 4 Ома, то частота среза составит 150 Гц. Если же сопротивление катушки саба 8 Ом, то частота среза составит 300 Гц.
Для полных чайников продавец даже привел схему в описании товара. Выглядит она вот так:
Далее мы собираем эту схему в Proteus. Так как при параллельном соединении конденсаторов номиналы суммируются, я сразу заменил 4 конденсатора одним.
Чаще всего можно увидеть прямо на динамиках значение сопротивления катушки на постоянном токе: 2 Ω, 4 Ω, 8 Ω. Реже 16 Ω. Значок Ω после цифр обозначает Омы. Также не забывайте, что катушка в динамике обладает индуктивностью.
Как ведет себя катушка индуктивности на разных частотах?
Как вы видите, на постоянном токе катушка динамика обладает активным сопротивлением, так как она намотана из медного провода. На низких частотах в дело вступает реактивное сопротивление катушки, которое вычисляется по формуле:
ХL — сопротивление катушки, Ом
П — постоянная и равна приблизительно 3,14
Так как сабвуфер предназначен именно для низких частот, значит, последовательно с активным сопротивлением самой катушки добавляется реактивное сопротивление этой же самой катушки. Но в нашем опыте мы это учитывать не будем, так как не знаем индуктивность нашего воображаемого динамика. Поэтому, все расчеты в опыте берем с приличной погрешностью.
Как утверждает китаец, при нагрузке на фильтр динамика в 4 Ома, его полоса пропускания будет доходить до 150 Герц. Проверяем так ли это:
Нагружаем наш фильтр динамиком в 8 Ом
Частота среза составила 213 Гц.
В описании на товар утверждалось, что частота среза на 8-омный саб составит 300 Гц. Думаю, можно поверить китайцам, так как во-первых, все данные приближенные, а во-вторых, симуляция в программах далека от реальности. Но суть опыта была не в этом. Как мы видим на АЧХ, нагружая фильтр сопротивлением большего номинала, частота среза сдвигается в большую сторону. Это также надо учитывать при проектировании фильтров.
Полосовые фильтры
В прошлой статье мы с вами рассматривали один из примеров полосового фильтра
Вот так выглядит АЧХ этого фильтра.
Полосовые резонансные фильтры
Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.
LC-контур в сочетании с резистором R образует делитель напряжения. Катушка и конденсатор в паре создают параллельный колебательный контур, который на частоте резонанса будет иметь очень высокий импеданс, в народе — обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.
АЧХ данного фильтра будет выглядеть примерно вот так:
В реальной же цепи пик характеристики АЧХ будет сглажен за счет потерь в катушке и конденсаторе, так как катушка и конденсатор обладают паразитными параметрами.
Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:
Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.
Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:
f0— это резонансная частота контура, Гц
L — индуктивность катушки, Гн
С — емкость конденсатора, Ф
Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.
Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.
Следовательно, полоса пропускания Δf=f2 — f1 = 5233-4839=394 Гц
Ну и осталось найти добротность:
Режекторные фильтры
Другой разновидностью LC схем является последовательная LC-схема.
Ее АЧХ будет выглядеть примерно вот так:
Как можно увидеть, такая схема на резонансной частоте и вблизи нее как бы вырезает небольшой диапазон частот. Здесь вступает в силу резонанс последовательного колебательного контура. Как вы помните, на резонансной частоте сопротивление контура будет равняться его активному сопротивлению. Активное сопротивление контура составляют паразитные параметры катушки и конденсатора, поэтому падение напряжения на самом контуре будет равняться падению напряжения на паразитном сопротивлении, которое очень мало. Такой фильтр называют узкополосным режекторным фильтром.
На практике звенья таких фильтров каскадируют, чтобы получить различные фильтры с требуемой полосой пропускания. Но есть один минус у фильтров, в которых имеется катушка индуктивности. Катушки дорогие, громоздкие, имеют много паразитных параметров. Они чувствительны к фону, который магнитным путем наводится от расположенных поблизости силовых трансформаторов.
Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.
Видео на тему «Как работает электрический фильтр», рекомендую к просмотру:
Заключение
В радиоэлектронике электрический фильтр находит множество применений. Например, в области электросвязи полосовые фильтры используются в диапазоне звуковой частоты (20 Гц-20 КГц). В системах сбора данных используются фильтры низких частот (ФНЧ). В музыкальной аппаратуре фильтры подавляют шумы, выделяют определенную группу частот для соответствующих динамиков, а также могут изменять звучание. В системах источников питания фильтры часто используются для подавления частот, близких к частоте сети 50/60 Герц. В промышленности фильтры применяются для компенсации косинуса фи, а также используются как фильтры гармоник.
Термин: Фильтр низкой частоты
Фильтр низкой частоты (ФНЧ, low-pass filter) – это устройство, подавляющее частоты сигнала выше частоты среза данного фильтра. На рисунке приведена амплитудно-частотная характеристика типичного ФНЧ. Единице условно присвоена максимальная амплитуда сигнала, точка с амплитудой 0,7 (-3 дБ) соответствует частоте среза ФНЧ, относительно которой производится расчёт ФНЧ по большинству существующих методик. От нулевой частоты до частоты среза ФНЧ находится полоса частот пропускания, справа – полоса частот подавления (задержания).
Подавление высокочастотных составляющих частот сигнала приводит к подавлению деталей сигнала с большими скоростями нарастания. ФНЧ всегда сглаживает сигнал, внося собственную задержку фильтра. Постоянную составляющую сигнала ФНЧ всегда пропускает.
ФНЧ традиционно применяют для улучшения сигнал/шум сигнального тракта за счёт подавления помех с частотами выше, чем верхняя граница полосы частот информационного сигнала. ФНЧ также широко применяют для подавления высокочастотных помех в цепях питания и сигнальных цепях в целях обеспечения электромагнитной совместимости аппаратуры.
ФНЧ могут быть как аналоговые, так и цифровые.
Аналоговые ФНЧ бывают активными (требуют дополнительной энергии питания для своей работы) и пассивными (не требуют дополнительной энергии питания). Активный аналоговый ФНЧ использует микроэлектронную технологию (типично: операционные усилители), пассивный аналоговый ФНЧ может быть сделан как на пассивных электронных компонентах (RC-фильтр, RLC-фильтр), так и с использованием пьезоэффекта, кварцевых резонаторов, объёмных резонаторов и прочих физических резонансных принципов.
Цифровые ФНЧ (фильтр цифрового сигнала) – это большое семейство вычислительных алгоритмов ЦОС. Принципиально цифровой фильтр может быть рекурсивным (с обратными связями в своём алгоритме) и нерекурсивным (без обратных связей). Принципиально, что АЧХ цифрового фильтра на частотной оси периодична: в частности, выше половины частоты дискретизации начинается зеркальная АЧХ цифрового фильтра.
Основные характеристики физически реализованного ФНЧ:
На последней характеристике стоит остановиться отдельно, поскольку она довольно коварна. Любой физически реализованный фильтр всегда имеет реальный конечный диапазон сигнала, при котором он способен корректно выполнять свою функцию. При превышении этого диапазона, в зависимости от технологии фильтра, может наступить ограничение, сложное искажение сигнала и прочие нелинейные эффекты. Но на практике данные эффекты легко идентифицировать в полосе пропускания ФНЧ, но довольно тяжело диагностировать в полосе подавления, поскольку значительная часть искаженного сигнала эффективно подавляется, а остальная часть – может вызвать странные эффекты. Таким образом, о непревышении рабочего диапазона сигнала в полосе подавления нужно помнить в реальных условиях применения ФНЧ.
Использование термина
Термин употребляется при описании трактов измерения, например, при описании принципа работы систем сбора данных.