Что такое электротехнологическое оборудование определение
Электротехнологические установки в промышленности.
К электротехнологическому оборудованию относятся: электрические печи и электронагревательные установки, электросварочные установки всех видов, установки для размерной электрофизической и электрохимической обработки металлов.
Виды установок:
2. Установки, основанные на электрохимическом действии тока. К ним относят электролизные ванны, заполняемые растворами или расплавами, установки для нанесения защитных и декоративных покрытий, а также установки для изготовления изделий методом гальванопластики, установки электрохимико-механической обработки изделий в электролитах.
3. Электромеханические установки, где прохождение импульсного тока вызывает возникновение механических усилий в обрабатываемом материале. Особый класс составляют установки ультразвукового воздействия, осуществ-ляющие технологический процесс путем создания в веществе механических колебаний высокой частоты, получаемых от ультразвуковых генераторов.
Электротехнологические процессы широко применяются в промышленности. Оборудование для этих процессов весьма разнообразно по принципу действия, мощности, характеристикам потребления электроэнергии.
К электротехнологическому оборудованию относятся: электрические печи и электронагревательные установки, электросварочные установки всех видов, установки для размерной электрофизической и электрохимической обработки металлов. Соответственно в понятие «электротехнология» включены следующие технологические процессы и методы обработки материалов:
· электротермические процессы, в которых используется превращение электрической энергии в тепловую для нагрева материалов и изделий в целях изменения их свойств или формы, а также для их плавления и испарения; – электросварочные процессы, в которых получаемая из электрической энергии тепловая энергия используется для нагрева тел в целях осуществления неразъемного соединения с обеспечением непосредственной сплошности в месте сварки;
· электрохимические методы обработки и получения материалов, при которых с помощью электрической энергии осуществляется разложение химических соединений и их разделение путем перемещения заряженных частиц (ионов) в жидкой среде под действием электрического поля (электролиз, гальванотехника, анодная электрохимическая обработка);
· электрофизические методы обработки, при которых для воздействия на материалы используется превращение электрической энергии как в механическую, так и в тепловую (электроэрозионная, ультразвуковая, магнитоимпульсная, электровзрывная);
· аэрозольная технология, при которой энергия электрического поля используется для сообщения электрического заряда взвешенным в газовом потоке мелким частицам вещества с целью перемещения их под действием поля в нужном направлении.
Термин «промышленные электротехнологические установки и оборудование» включает агрегаты, в которых осуществляются электротехнологические процессы, а также вспомогательные электротехнические аппараты и приборы (источники питания, устройства защиты, управления и др.).
Электронагрев широко применяется на промышленных предприятиях при производстве фасонного литья из металлов и сплавов, нагрева заготовок перед обработкой давлением, термической обработки деталей и узлов электрических машин, сушки изоляционных материалов и т. д.
Электротермической установкой называют комплекс, состоящий из электротермического оборудования (электрической печи или электротермического устройства в которых электрическая энергия преобразуется в тепловую), и электрического, механического и другого оборудования, обеспечивающего осуществление рабочего процесса в установке.
Электрический нагрев дает следующие преимущества по сравнению с топливным:
1. Очень простое и точное осуществление заданного температурного режима.
2. Возможность концентрации высоких мощностей в малом объеме.
3. Получение высоких температур (3000 °C и выше против 2000 ° при топливном нагреве).
4. Возможность получения высокой равномерности теплового поля.
5. Отсутствие воздействия газов на обрабатываемое изделие.
6. Возможность вести обработку в благоприятной среде (инертный газ или вакуум).
7. Малый угар легирующих присадок.
8. Высокое качество получаемых металлов.
9. Легкость механизации и автоматизации электротермических установок.
10. Возможность использования поточных линий.
11. Лучшие условия труда обслуживающего персонала.
Недостатки электрического нагрева: более сложная конструкция, высокая стоимость установки и получаемой тепловой энергии.
Электротермическое оборудование весьма разнообразно по принципу действия, конструкции и назначению. В наиболее общей форме все электрические печи и электротермические устройства можно разделить по назначению на плавильные печи для выплавки или перегрева расплавленных металлов и сплавов и термические (нагревательные) печи и устройства для термообработки, изделий из металла, нагрева материалов под пластическую деформацию, сушки изделий и т. д.
По способу преобразования электрической энергии в тепловую различают, в частности, печи и устройства сопротивления, дуговые печи, индукционные печи и устройства.
Печь нагрева сопротивлением
Дата добавления: 2015-04-21 ; просмотров: 28 ; Нарушение авторских прав
Классификация электротехнологических установок
Электротехнологические процессы широко применяются в промышленности. Оборудование для этих процессов весьма разнообразно по принципу действия, мощности, характеристикам потребления электроэнергии.
К электротехнологическому оборудованию относятся: электрические печи и электронагревательные установки, электросварочные установки всех видов, установки для размерной электрофизической и электрохимической обработки металлов. Соответственно в понятие «электротехнология» включены следующие технологические процессы и методы обработки материалов:
электротермические процессы, в которых используется превращение электрической энергии в тепловую для нагрева материалов и изделий в целях изменения их свойств или формы, а также для их плавления и испарения; – электросварочные процессы, в которых получаемая из электрической энергии тепловая энергия используется для нагрева тел в целях осуществления неразъемного соединения с обеспечением непосредственной сплошности в месте сварки;
электрохимические методы обработки и получения материалов, при которых с помощью электрической энергии осуществляется разложение химических соединений и их разделение путем перемещения заряженных частиц (ионов) в жидкой среде под действием электрического поля (электролиз, гальванотехника, анодная электрохимическая обработка);
электрофизические методы обработки, при которых для воздействия на материалы используется превращение электрической энергии как в механическую, так и в тепловую (электроэрозионная, ультразвуковая, магнитоимпульсная, электровзрывная);
аэрозольная технология, при которой энергия электрического поля используется для сообщения электрического заряда взвешенным в газовом потоке мелким частицам вещества с целью перемещения их под действием поля в нужном направлении.
Термин «промышленные электротехнологические установки и оборудование» включает агрегаты, в которых осуществляются электротехнологические процессы, а также вспомогательные электротехнические аппараты и приборы (источники питания, устройства защиты, управления и др.).
Электронагрев широко применяется на промышленных предприятиях при производстве фасонного литья из металлов и сплавов, нагрева заготовок перед обработкой давлением, термической обработки деталей и узлов электрических машин, сушки изоляционных материалов и т. д.
Электротермической установкой называют комплекс, состоящий из электротермического оборудования (электрической печи или электротермического устройства в которых электрическая энергия преобразуется в тепловую), и электрического, механического и другого оборудования, обеспечивающего осуществление рабочего процесса в установке.
Электрический нагрев дает следующие преимущества по сравнению с топливным:
1. Очень простое и точное осуществление заданного температурного режима.
2. Возможность концентрации высоких мощностей в малом объеме.
3. Получение высоких температур (3000 °C и выше против 2000 ° при топливном нагреве).
4. Возможность получения высокой равномерности теплового поля.
5. Отсутствие воздействия газов на обрабатываемое изделие.
6. Возможность вести обработку в благоприятной среде (инертный газ или вакуум).
7. Малый угар легирующих присадок.
8. Высокое качество получаемых металлов.
9. Легкость механизации и автоматизации электротермических установок.
10. Возможность использования поточных линий.
11. Лучшие условия труда обслуживающего персонала.
Недостатки электрического нагрева : более сложная конструкция, высокая стоимость установки и получаемой тепловой энергии.
По способу преобразования электрической энергии в тепловую различают, в частности, п ечи и устройства сопротивления, дуговые печи, индукционные печи и устройства.
1. По способу превращения электроэнергии в тепло.
1) Установки с нагреваемым током активным сопротивлением.
2) Индукционные установки.
3) Дуговые установки.
4) Установки диэлектрического нагрева.
2. По месту выделения тепловой энергии.
1) Прямого нагрева (тепло выделяется непосредственно в изделиях)
2) Косвенного нагрева (тепло выделяется в нагревателе либо в межэлектродном промежутке электрической дуги.
3. По конструктивным признакам.
В электропечах и электротермических устройствах сопротивления используется выделение тепла электрическим током при прохождении его через твердые и жидкие тела. Электропечи этого вида преимущественно выполняются как печи косвенного нагрева.
Плавильные печи сопротивления применяют преимущественно при производстве литья из легкоплавких металлов и сплавов.
Работа плавильных дуговых электропечей основана на выделении тепла в дуговом разряде. В электрической дуге концентрируется большая мощность и развивается температура свыше 3500° С.
В дуговых печах косвенного нагрева дуга горит между электродами, а тепло передается расплавляемому телу в основном излучением. Печи такого рода используют при производстве фасонного литья из цветных металлов, их сплавов и чугуна.
В дуговых печах прямого нагрева одним из электродов служит само расплавляемое тело. Эти печи предназначены для выплавки стали, тугоплавких металлов и сплавов. В дуговых печах прямого нагрева, в частности, выплавляют большую часть стали для фасонного литья.
В индукционных печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой нагрев.
Индукционную печь или устройство можно рассматривать как своего рода трансформатор, в котором первичная обмотка (индуктор) подключена к источнику переменного тока, а вторичной обмоткой служит само нагреваемое тело. Индукционные плавильные печи применяют при производстве литья, в том числе фасонного, из стали, чугуна, цветных металлов и сплавов.
Нагревательные индукционные печи и установки используют для нагрева заготовок под пластическую деформацию и для проведения разного рода термообработки. Индукционные термические устройства применяют для поверхностной закалки и других специализированных операций.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое электротехнологическое оборудование определение
Установки, в которых происходит превращение электрической энергии вдругие виды с одновременным осуществлением технологических процессов, врезультате которых происходит изменение вещества, называют электротехнологическими.
Следует отметить, что в электротехнологических процессах используются свойства самих обрабатываемых веществ и материалов: электропроводность,магнитная проницаемость, диэлектрическая проницаемость, теплопроводность,теплоемкость, скрытая теплота плавления или парообразование, теплосодержание, энтальпия.
Применение электротехнологий позволяет с веществом, находящимся вкаждом из агрегатных состояний (показано на нижеприведенной блок-схеме,рис. 1.1), посредством постоянных и переменных (различной частоты) токов,постоянных и переменных электрических и магнитных полей (с широким диапазоном напряженностей) совершать бесчисленное множество операций, аименно: изменение температуры, формы, структуры, состава, изменениесвойств в разных направлениях и т.д.
Электротехнологические установки условно можно подразделить на установки общепромышленного и специального назначения.Основные группы электротехнологических установок общепромышленного назначения представлены на блок-схеме (рис. 1.2).
ЭЛЕКТРОТЕРМИЧЕСКИЕ УСТАНОВКИ применяются в промышленностидля термообработки металлов под пластическую деформацию, закалку, плавления, нагрева диэлектриков; в сельском хозяйстве для обогрева помещений различного технологического назначения; в быту (бытовые нагревательные приборы).Один из вариантов электротермических установок – индукционная тигельная печь. На рис. 1.3 представлена схема печи.Индукционная тигельная печь широко применяется для плавки как цветных, так и черных металлов. Емкость печи может варьироваться от десятковграммов до десятков тонн.
ЭЛЕКТРОХИМИЧЕСКИЕ УСТАНОВКИ применяются в промышленности приэлектролизе расплавов и растворов, для нанесения защитных и декоративныхпокрытий, элекро-химико-механической обработки изделий в электролитах.В качестве примера на рис 1.4 представлена схема электролизной установки.Явление выделения вещества на электродах при прохождении через электролит тока, а также процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов,называется электролизом. В промышленности электролиз применяется в основном для анодногорастворения металла и его катодного осаждения из растворов и расплавов.
ЭЛЕКТРОМЕХАНИЧЕСКИЕ УСТАНОВКИ применяются в промышленностидля ультразвукового воздействия на обрабатываемый материал, магнитоимпульсной обработки металлов.Одним из примеров электромеханической установки является установкаультразвуковой очистки. Принципиальная схема представлена на рис. 1.5.
Одним из типичных применений ультразвука в машиностроении являетсяочистка поверхности изделий, загрязненных жировыми или мазутными пленками, покрытых осадками из продуктов сгорания топлива, ржавчиной, окалиной, оксидными пленками. Такого рода очистка выполняется обычно с помощью моющих средств, растворителей в барабанах, а также с помощью щеток.При использовании ультразвуковых колебаний очистка в ряде случаев можетдать хорошие результаты при использовании воды; когда же очистка осуществляется с помощью растворителей, она ускоряется в десятки раз, причем качество ее (степень очистки поверхности) намного улучшается. Особенно эффективной оказывается ультразвуковая очистка деталей сложной конфигурации с полостями и, в частности, труб, так как механическая очистка таких деталей (например, щетками) затруднительна.
ЭЛЕКТРОКИНЕТИЧЕСКИЕ УСТАНОВКИ применяются для разделения сыпучих материалов и эмульсий, очистки сточных вод, электроокраски, электроэрозионной обработки металлов.Как пример на рис. 1.6 показана установка для электроэрозионной обработки металлов.Для обработки металлов с высокими механическими свойствами применяется метод размерной обработки при непосредственном использовании теплового эффекта электрической энергии – электроэрозионная обработка. Онаоснована на эффекте расплавления и испарения микропорций материала подтепловым воздействием импульсов электрической энергии, которая выделяетсяв канале электроискрового заряда между поверхностью обрабатываемой деталии электродом-инструментом, погруженным в жидкую непроводящую среду.
ЭЛЕКТРОТЕХНОЛОГИЧЕСКИЕ УСТАНОВКИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ– установки, представляющие совокупность различного рода воздействий, в частности перенос энергии за счет электромагнитного поля.В качестве примера электротехнологических установок специального назначения можно привести устройства для электродинамической сепарации вбегущем магнитном поле, предназначенные для извлечения ломов и отходовнеферромагнитных металлов из твердых отходов, а также для сортировки ломов цветных металлов; устройства для электромагнитного транспорта и электромагнитного перемешивания жидких металлов.
Один из видов электротехнологических установок специальногоназначения – «одноручьевой» электромагнитный перемешиватель, его схемапоказана на рис. 1.7. Электромагнитное перемешивание – бесконтактноесиловое воздействие на кристаллизующийся металл – является альтернативоймеханическим способам воздействия на кристаллизующийся металл и позволяет получить мелкозернистую литую структуру; исключить ликвацию, загазованность, неметаллические включения в литом металле; обеспечить повышенные эксплуатационные свойства полуфабрикатов и готовых изделий; исключить ряд промежуточных технологических переделов, что способствует энергосбережению.На рис. 1.8 показана структура латуни, отлитой без электромагнитногоперемешивания и с применением электромагнитного перемешивания. Сравнивая показанные темплеты, очевидно, что применение электромагнитногоперемешивания в процессе кристаллизации способствует измельчению литойструктуры, что в конечном итоге сказывается положительно на качествеполуфабрикатов и готовых изделий.
Онлайн журнал электрика
Статьи по электроремонту и электромонтажу
Классификация электротехнологических установок
Электротехнологические процессы обширно используются в индустрии. Оборудование для этих процессов очень многообразно по принципу деяния, мощности, чертам употребления электроэнергии.
К электротехнологическому оборудованию относятся: электронные печи и электронагревательные установки, электросварочные установки всех видов, установки для размерной электрофизической и химической обработки металлов. Соответственно в понятие «электротехнология» включены последующие технологические процессы и способы обработки материалов:
электротермические процессы, в каких употребляется перевоплощение электронной энергии в термическую для нагрева материалов и изделий в целях конфигурации их параметров либо формы, также для их плавления и испарения; – электросварочные процессы, в каких получаемая из электронной энергии термическая энергия употребляется для нагрева тел в целях воплощения неразъемного соединения с обеспечением конкретной сплошности в месте сварки;
химические способы обработки и получения материалов, при которых при помощи электронной энергии осуществляется разложение хим соединений и их разделение методом перемещения заряженных частиц (ионов) в водянистой среде под действием электронного поля (электролиз, гальванотехника, анодная химическая обработка);
электрофизические способы обработки, при которых для воздействия на материалы употребляется перевоплощение электронной энергии как в механическую, так и в термическую (электроэрозионная, ультразвуковая, магнитоимпульсная, электровзрывная);
аэрозольная разработка, при которой энергия электронного поля употребляется для сообщения электронного заряда взвешенным в газовом потоке маленьким частичкам вещества с целью перемещения их под действием поля в подходящем направлении.
Термин «промышленные электротехнологические установки и оборудование» включает агрегаты, в каких осуществляются электротехнологические процессы, также вспомогательные электротехнические аппараты и приборы (источники питания, устройства защиты, управления и др.).
Электронагрев обширно применяется на промышленных предприятиях при производстве фасонного литья из металлов и сплавов, нагрева заготовок перед обработкой давлением, термообработки деталей и узлов электронных машин, сушки изоляционных материалов и т. д.
Электротермической установкой именуют комплекс, состоящий из электротермического оборудования (электронной печи либо электротермического устройства в каких электронная энергия преобразуется в термическую), и электронного, механического и другого оборудования, обеспечивающего воплощение рабочего процесса в установке.
Электронный нагрев дает последующие достоинства по сопоставлению с топливным:
1. Очень обычное и четкое воплощение данного температурного режима.
2. Возможность концентрации больших мощностей в малом объеме.
3. Получение больших температур (3000 °C и выше против 2000 ° при топливном нагреве).
4. Возможность получения высочайшей равномерности термического поля.
5. Отсутствие воздействия газов на обрабатываемое изделие.
6. Возможность вести обработку в подходящей среде (инертный газ либо вакуум).
7. Малый угар легирующих присадок.
8. Высочайшее качество получаемых металлов.
9. Легкость механизации и автоматизации электротермических установок.
10. Возможность использования поточных линий.
11. Наилучшие условия труда обслуживающего персонала.
Недочеты электронного нагрева : более непростая конструкция, высочайшая цена установки и получаемой термический энергии.
По методу преобразования электронной энергии в термическую различают, а именно, п ечи и устройства сопротивления, дуговые печи, индукционные печи и устройства.
Печь нагрева сопротивлением
Систематизация электротермических установок
1. По методу перевоплощения электроэнергии в тепло.
1) Установки с нагреваемым током активным сопротивлением.
2) Индукционные установки.
3) Дуговые установки.
4) Установки диэлектрического нагрева.
2. По месту выделения термический энергии.
1) Прямого нагрева (тепло выделяется конкретно в изделиях)
2) Косвенного нагрева (тепло выделяется в нагревателе или в межэлектродном промежутке электронной дуги.
3. По конструктивным признакам.
4. По предназначению.
В электропечах и электротермических устройствах сопротивления употребляется выделение тепла электронным током при прохождении его через твердые и водянистые тела. Электропечи этого вида в большей степени производятся как печи косвенного нагрева.
Перевоплощение электроэнергии в тепло в их происходит в жестких нагревательных элементах, от которых тепло методом излучения, конвекции и теплопроводимости передается нагреваемому телу, или в водянистом теплоносителе — расплав ленной соли, в которую погружается нагреваемое тело, и тепло передается ему методом конвекции и теплопроводимости. Печи сопротивления — часто встречающийся и разнообразный вид электропечей.
Плавильные печи сопротивления используют в большей степени при производстве литья из легкоплавких металлов и сплавов.
Работа плавильных дуговых электропечей базирована на выделении тепла в дуговом разряде. В электронной дуге концентрируется большая мощность и развивается температура выше 3500° С.
В дуговых печах косвенного нагрева дуга пылает меж электродами, а тепло передается расплавляемому телу в главном излучением. Печи такового рода употребляют при производстве фасонного литья из цветных металлов, их сплавов и чугуна.
В дуговых печах прямого нагрева одним из электродов служит само расплавляемое тело. Эти печи созданы для выплавки стали, тугоплавких металлов и сплавов. В дуговых печах прямого нагрева, а именно, выплавляют огромную часть стали для фасонного литья.
В индукционных печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электрическим полем. Таким макаром, тут осуществляется прямой нагрев.
Индукционную печь либо устройство можно рассматривать как собственного рода трансформатор, в каком первичная обмотка (индуктор) подключена к источнику переменного тока, а вторичной обмоткой служит само нагреваемое тело. Индукционные плавильные печи используют при производстве литья, в том числе фасонного, из стали, чугуна, цветных металлов и сплавов.
Нагревательные индукционные печи и установки употребляют для нагрева заготовок под пластическую деформацию и для проведения различного рода термической обработки. Индукционные тепловые устройства используют для поверхностной закалки и других специализированных операций.