Что такое чувствительность акселерометра

Как правильно выбрать акселерометр и датчик ускорения

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометраНужен акселерометр? Столкнувшись с разнообразием технологий, формы, размера, диапазона измерений, нововведений даже самые опытные инженеры могут столкнуться с проблемой выбора правильной модели. Надеемся, что данная статья поможет быстрее сориентироваться в широкой номенклатуре акселерометров.

Принцип измерений

Первый шаг к правильному выбору акселерометра – это определение наиболее подходящего параметра измерений. Сегодня используются три технологии построения акселерометра:
— пьезоэлектрические акселерометры – самый распространенный на сегодняшний день вид акселерометров, которые широко используются для решения задач тестирования и измерений. Такие акселерометры имеют очень широкий частотный диапазон (от нескольких Гц до 30 кГц) и диапазон чувствительности, а также выпускаются в различных размерах и формах. Выходной сигнал пьезоэлектрических акселерометров может быть зарядовым (Кл) или по напряжению. Датчики могут использоваться для измерений как удара, так и вибрации.
— пьезорезистивные акселерометры обычно имеют малый диапазон чувствительности, поэтому они больше подходят для детектирования ударов, чем определения вибрации. Еще одна область их применения – испытания на безопасность при столкновении. В большинстве своем пьезорезистивные акселерометры отличаются широким диапазоном частот (от нескольких сотен Гц до 130 кГц и более), при этом частотная характеристика может доходить до 0 Гц (т.н. DC датчики) или оставаться неизменной, что позволяет измерять сигналы большой продолжительности.
— акселерометры на переменных конденсаторах относятся к компонентам новейших технологий. Как и пьезорезистивные акселерометры, они имеют DC ответ. Такие акселерометры отличаются высокой чувствительностью, узкой полосой пропускания (от 15 до 3000 Гц) и отличной температурной стабильностью. Погрешность чувствительности в полном температурной диапазоне до 180°C не превышает 1.5 %. Акселерометры на переменных конденсаторах используются для измерений низкочастотной вибрации, движения и фиксированного ускорения.

Измеряемые параметры

Схематично, параметры, измеряемые акселерометрами, можно сгруппировать в следующие классы:

Общие понятия

Перед обсуждением технологии и особенностей применения, необходимо сделать несколько общих замечаний.
Частотная характеристика – это зависимость электрического выходного сигнала акселерометра от внешнего механического воздействия в частотном диапазоне с фиксированной амплитудой. Это один из основных параметров, от которого зависит выбор того или иного компонента. Диапазон частот обычно определяется серией экспериментов и указывается в спецификации. Обычно этот параметр указывается с точностью ±5% от опорной частоты (обычно 100 Гц).

Многие компоненты специфицированы на ±1 дБ или ±3 дБ. Эти значения указывают на точность акселерометра в заданном частотном диапазоне. Многие data sheet содержат графики типичной АЧХ, которые иллюстрируют флуктуацию точности компонента в различных частотных диапазонах.

Другой важный параметр акселерометра – число осей измерения. Сегодня выпускаются компоненты с одной и тремя измерительными осями. Еще одна возможность построения сложной системы – это организация трех акселерометров в один измерительный блок.

Вибрация

Лучший выбор для измерения вибрации – это пьезоэлектрические акселерометры, благодаря их широкой частотной характеристике, хорошей чувствительности и высокой разрешающей способности. В зависимости от типа выходного сигнала они могут быть с зарядовым выходом и с выходом по напряжению (IEPE).

Однако в отличие от IEPE акселерометров, емкостные датчики требуют применения специальных малошумящих кабелей, цена которых значительно превышает цену на стандартные коаксиальные кабели. Для подключения датчиков также потребуются усилители заряда и линейные конвертеры. Подводя итоги, можно придти к заключению, что емкостные акселерометры предпочтительны для высокотемпературных измерений неизвестных заранее ускорений.

В приложениях, где требуется измерять вибрацию очень малой частоты, рекомендуется использовать акселерометры на переменных конденсаторах (VC). Их частотная характеристика составляет от 0 Гц до 1 кГц, в зависимости от требуемой чувствительности. При проведении измерений низкочастотной вибрации VC акселерометр с частотной характеристикой 0-15 Гц будет иметь чувствительность 1 В/г. Такие датчики незаменимы в электрогидравлических шейкерах, в автомобилестроении, в тестовых испытаниях машин и конструкций, в системах подвески, железнодорожном транспорте.

Ударные ускорения

Для измерений ударных ускорений используются две технологии, модельный ряд представлен компонентами на различный уровень силы удара и с различными выходными характеристиками. Выбор акселерометра для ударных ускорений, в первую очередь, зависит от ожидаемого уровня ударного ускорения.

Для измерения малых ударных ускорений можно использовать акселерометры общего применения. Акселерометр должен иметь линейный диапазон до 500 г и ударопрочность 500 г. Обычно для этого используются датчики с выходным сигналом по напряжению, поскольку они не чувствительны к кабельным вибрациям. Для аттенюации резонанса рекомендуется использовать усилитель с фильтром нижних частот.

Для тестовых испытаний машин на безопасность используются пьезорезистивные акселерометры. Для измерений ударов в дальней зоне применяются специализированные акселерометры со встроенным фильтром и сдвиговой модой. Электронный фильтр уменьшает собственную резонансную частоту акселерометра для предотвращения перегрузки оборудования.

Акселерометры для измерений в ближней зоне имеют рабочий диапазон до 20,000 г. Здесь выбор зависит от специфики проводимого теста, поэтому используются как пьезоэлектрические, так и пьезорезистивные датчики. Обычно такие приборы имеют встроенный механический фильтр.

Также как и при измерении вибрации, частотная характеристика является важнейшим параметром датчиков ударного ускорения. Желательно, чтобы такие датчики имеют широкий диапазон частот (около 10 кГц).

Измерение движения, фиксированного ускорения и низкочастотной вибрации

Для таких целей наиболее подходящим выбором станут акселерометры с переменной емкостью. Они позволяют измерять медленные изменения ускорения и низкочастотную вибрацию, при этом уровень их выходного сигнала достаточно высок. Также, такие датчики обеспечивают высокую стабильность в широком диапазоне рабочих температур.
При установке VC акселерометра в положение, когда его ось чувствительности параллельна оси земного притяжения, выходной сигнал датчика будет равен усилию в 1 г. Такая закономерность известна как DC отклик. Благодаря такой особенности, акселерометры на переменных конденсаторах часто используются для измерений центробежной силы или ускорений и замедлений подъемных устройств.

Условия эксплуатации

После выбора акселерометра соответствующей технологии и отвечающего требованиям целевого применения необходимо рассмотреть ряд следующих факторов. В первую очередь, это условия окружающей среды, где датчик будет использоваться. Сюда относятся рабочая температура, максимальный уровень ускорения и влажность.

ТехнологияТемпературный диапазон
Пьезоэлектрические общего применения-55…260°C
Пьезоэлектрические высокотемпературные-55…650°C
Пьезоэлектрические низкотемпературные-184…177°C
С выходом по напряжению общего применения-55…125°C
С выходом по напряжению высокотемпературные-55…175°C
Пьезорезистивные-55…66°C

В случае с акселерометрами зарядового типа, динамические характеристики не содержат рабочего диапазона, поскольку он во многом зависит от усилителя заряда. Здесь лучше обратиться к линейности амплитудной характеристики, которая указывается в разделе динамических параметров. Также как и в предыдущем случае, максимальный диапазон измерений, указанный при определенных условиях эксплуатации, свидетельствует о предельной нагрузочной способности акселерометра.

О возможностях работы датчиков во влажной среде свидетельствуют различные указатели на герметичность исполнения корпуса. Следует заметить, что непрерывное изменение температурных условий может нарушить эпоксидную изоляцию корпуса датчика.

Поскольку современные технологии производства акселерометров используют немагнитные материалы, магнитная чувствительность редко указывается в спецификации на компоненты. Если датчик предназначен для установки на гибкие поверхности, на ведущее место выходят параметры изгиба основания. Сгиб поверхности приводит к изгибу основания акселерометра, что может привести к ошибочному срабатыванию датчика в результате вибрации. Поэтому следует избегать применения компрессионных акселерометров на гибких поверхностях.

Вес акселерометра

При соприкосновении акселерометра и объекта измеряемое ускорение изменится. Этого эффекта можно избежать, если не забывать про вес самого датчика. В качестве эмпирического правила можно принять то, что вес акселерометра должен превышать вес предмета не более чем на 10%.

Чувствительность и разрешение

Когда необходимы датчики с малым выходным сигналом или широким динамическим диапазоном, следует обратиться к параметрам разрешения и чувствительности.

Акселерометр преобразовывает механическую энергию в электрический выходной сигнал. Такой сигнал может выражаться в мВ/г или в пКл/г (для датчиков с зарядовым выходом). Обычно линейка акселерометров содержит несколько моделей с различной чувствительностью, оптимальное значение которой зависит от уровня измеряемого сигнала. Например, для измерений сильных ударных колебаний требуются датчики с низкой чувствительностью.

Для приложений, требующих измерений малых ускорений, лучшим решением будет использование акселерометра с высокой чувствительностью, где выходной сигнал будет выше уровня шума усилителя. Например, если ожидается уровень вибрации 0.1g, а чувствительность датчика составляет 10 мВ/g, напряжение выходного сигнала составит 1 мВ и потребуется акселерометр с более высокой чувствительностью.

Разрешение связано с минимальным значимым сигналом акселерометра. Этот параметр базируется на уровне собственных шумов акселерометра (а при выборе IEPE акселерометра, и на внутренней электронной схеме) и выражается в g rms.

Перейти в каталог Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра «Датчики ускорения»

Источник

Лекция 12. Измерение параметров вибрации

Датчики для измерения вибрации

Измерение механических колебаний может быть относительным (например, биения вала относительно корпуса подшипника) или абсолютной, что предполагает наличие неподвижной точки отсчёта – искусственного «нуля», относительно которого и выполняются измерения. Основным решением, в настоящее время, является преобразование механических колебаний в электрический сигнал при помощи вибрационных датчиков.

Вибрационный датчик – устройство, генерирующее электрический сигнал, пропорциональный измеряемому параметру вибрационного процесса. При измерении параметров вибрации используются датчики: проксиметры – для измерения виброперемещения; велосиметры – для измерения виброскорости; акселерометры генерирующие сигнал, пропорциональный виброускорению.

Проксиметр (датчик перемещения) – стационарно установленное устройство, имеющее усилитель сигналов и генерирующее напряжение на выходе, пропорциональное расстоянию до вращающегося ротора (рисунок 78). Датчик (вихретоковый) бесконтактно измеряет относительное перемещение вала в пределах зазора подшипника. При колебаниях зазора между ротором и датчиком, закрепленном на опоре, изменяются частота или амплитуда электромагнитных параметров, пропорциональных частоте и значению амплитуды зазора. Для измерения радиальной вибрации, датчики устанавливают парами под углом 90° перпендикулярно валу. Это делает возможным визуализацию на экране осциллографа орбиты движения вала, полярную диаграмму траектории центра вала в радиальной плоскости.

Вихретоковый преобразователь относительного перемещения: 1 – рабочая катушка; 2 – катушка температурной компенсации; 3 – корпус; 4 – изоляционная втулка

Рисунок 78 – Проксиметры

Велосиметры (измерители виброскорости) состоят из катушки индуктивности и магнита (рисунок 79). Относительное движение магнитного поля в катушке порождает ЭДС индукции, сила которой пропорциональна скорости движения. Имеют больший выходной сигнал, применение ограничивается частотой 2000 Гц.

Электродинамический преобразователь относительного перемещения: 1 – магнит; 2 – магнитопровод; 3 – разрезные пружины; 4 – катушка в качестве инерционного элемента

Рисунок 79 – Велосиметры

Конструктивно датчик выполнен в виде цилиндрического корпуса, в котором расположена катушка индуктивности в упругом подвесе, внутри которой расположен магнит. При колебаниях корпуса датчика катушка индуктивности начинает колебаться под действием силы инерции, пересекая магнитное поле, при этом в катушке возникает ЭДС, амплитуда и частота которой пропорциональны скорости и частоте колебаний корпуса датчика, прикрепленного к исследуемой поверхности.

Пьезоэлектрические акселерометры – наиболее универсальные и часто используемые датчики (рисунок 80). Основные варианты конструкции:

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Датчик с элементом сжатия

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Датчик со сдвиговым элементом

Рисунок 80 – Акселерометры

Акселерометр является преобразователем механических колебаний в электрический сигнал пропорциональный виброускорению. Чувствительный элемент акселерометра состоит из одного или нескольких дисков или пластинок из пьезоэлектрических материалов. Действие пьезоэлектрического измерительного преобразователя основано на использовании прямого пьезоэффекта, то есть свойств некоторых материалов (пьезоэлектриков) генерировать заряд, под действием приложенной к ним механической силы. Над чувствительным элементом установлена инерционная масса, прижатая гайкой (жесткой пружиной). Под воздействием механических колебаний инерционная масса m воздействует на пьезоэлемент с силой F, пропорциональной ускорению a: F = m × a. В результате пьезоэлектрического эффекта на поверхности пьезоэлемента возникает электрический сигнал U пропорциональный воздействующей силе F и ускорению а механических колебаний. Частотный диапазон от 0 до 1/3 резонансной частоты акселерометра (обычно 30 кГц). Акселерометры имеют линейную амплитудную чувствительность в рабочем диапазоне (рисунок 81), стабильно работают длительное время, нуждаются в периодической калибровке.

Рисунок 81 – Амплитудно-частотная характеристика пьезоакселерометра

Пьезоэлектрические вибропреобразователи имеют диапазон рабочих частот до первого резонанса; электродинамический датчик имеет диапазон рабочих частот между первым и вторым резонансом; датчик перемещения – в области частот выше собственной частоты датчика.

Применение пьезоэлектрических датчиков по температуре окружающей среды ограничено, точкой Кюри температурой фазового перехода. При нагреве датчика возможен пироэффект появление заряда на выходе датчика и уменьшение чувствительности. Применяемые в пьезоэлектрических датчиках ферроэлектрические керамики (группа титанатов и цирконатов свинца) имеют высокие значения точек Кюри и работают в температурных диапазонах до +250 °С.

Акселерометры различаются на «зарядовые», датчики напряжения и со встроенной электроникой. Первые два типа относятся к высокоомным преобразователям, третий к низкоомным. Акселерометры измеряют абсолютное ускорение, а сигналы виброперемещения и виброскорости получаются путем преобразования в электронной части виброметра.

Пьезоэлектрический элемент акселерометра используется как источник заряда или как источник напряжения. Поэтому, чувствительность акселерометра определяется по заряду на единицу ускорения или напряжению на единицу ускорения.

Чувствительность по заряду выражается в единицах заряда (пКл) на единицу ускорения механических колебаний – пКл/(м/с 2 ).

Чувствительность по напряжению выражается в единицах выдаваемого электрического напряжения на единицу ускорения механических колебаний – мВ/(м/с 2 ).

Чувствительность по заряду не зависит от длины соединительного кабеля, а по напряжению зависит. Учитывая это, калибровка акселерометров по напряжению проводится с определенным соединительным кабелем.

При использовании пьезоэлектрических датчиков с усилителем заряда отношение сигнал/шум падает с увеличением длины кабеля. Поэтому, при применении усилителя заряда надо применять малошумные кабели и минимизировать изгибы.

Рабочий диапазон акселерометра по верхней частоте, в котором его характеристика равномерна и линейна, определяется, исходя из его амплитудно-частотной характеристики (рисунок 81), которая определяется резонансной характеристикой датчика в закрепленном состоянии. Фазовая характеристика акселерометра не вносит искажений в пределах частоты АЧХ.

Нижний предел рабочего частотного диапазона определяется характеристикой предусилителя, используемого в виброметре.

По характеристикам неравномерности датчики выпускаются:

Разъемы для подключения соединительных кабелей акселерометров распо-ложены сверху, или сбоку корпуса. Чувствительность находится в диапазоне 1…16 мВ/(м/с 2 ) или пКл/(м/с 2 ). Специальные акселерометры имеют нормализованную чувствительность, например 1 или 10 пКл/(м/с 2 ), что упрощает калибровку и проверку виброизмерительных систем.

Акселерометры рекомендуется проверять и повторно калибровать по регулярным интервалам времени. Калибровка чувствительности акселерометра дает гарантию его работоспособности.

Способы крепления вибрационных датчиков

Возможны следующие способы крепления вибрационных датчиков (рисунок 82):

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 82 – Способы крепления вибрационных датчиков

Крепление при помощи шпильки на гладкой плоской поверхности является предпочтительным. Место проведения измерения предварительно подготавливается (рисунок 83). Сверлится отверстие, нарезается резьба, шлифуется поверхность. При этом соблюдаются следующие требования:

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 83 – Требования к месту установки датчика при помощи шпильки

Поверхность объекта должна быть ровной и чистой. На рабочую поверхность датчика наносится слой пластичной смазки, что увеличивает жёсткость механического соединения датчика и объекта измерений и создает хороший контакт поверхностей.

На рисунке 84 показана амплитудно-частотная характеристика пьезодатчика, закрепленного стальной шпилькой на гладкой поверхности объекта. В этом случае резонансная частота пьезодатчика практически совпадает с резонансной частотой, полученной при калибровке производителем (примерно 33 кГц).

Рисунок 84 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью стальной шпильки

Недостатки: большие затраты времени на установку датчика и необходимость проведения слесарных работ.

Альтернативным методом крепления пьезодатчиков является крепление на тонком слое пчелиного воска, при помощи клея, цемента и другие. Резонансная частота уменьшается незначительно (рисунок 85). Этот способ крепления применим при комнатной температуре поверхности объекта и малой амплитуде колебаний.

Рисунок 85 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью пчелиного воска

Использование промежуточных элементов – пластин, дисков приводит к искажению воспринимаемого сигнала на высоких из-за механической фильтрации и снижению резонансной частоты из-за повышенной податливости системы.

В тех случаях, когда необходимо обеспечить прочное крепление акселерометра без нарушения поверхности объекта резьбовыми отверстиями, используются специальные шпильки, закреплённые на плоском диске (промежуточные элементы) прикрепляемые твёрдым клеем или цементом. В качестве склеивающих материалов рекомендуются эпоксидные смолы и цианакриловые клеи. Изолированная шпилька и слюдяная шайба используются там, где необходима электрическая изоляция акселерометра относительно объекта.

Наиболее широкое распространение получил способ крепления датчиков на гладкой поверхности объекта с помощью постоянного магнита. При этом статическая сила сцепления магнита с измерительной поверхностью во многом влияет на диапазон измерений. Это определяет необходимость использования неодимовых магнитов с усилием 30…50 Н. Требования к обработке поверхности те же, что и для соединения при помощи шпильки. Крепление при помощи магнита (рисунок 86) сокращает измеряемый частотный диапазон до 5000 Гц. Резонансная частота в этом случае уменьшается примерно до 7… 15 кГц и зависит от типа магнита.

Рисунок 86 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью магнита

Измерение вибрации с помощью щупа, снижает верхний частотный диапазон (рисунок 87) до 1000 Гц. Угол между измерительной осью вибродатчика и направлением измерения на должен превышать 25°.

Рисунок 87 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью щупа

При проведении измерений измерительный кабель не должен подвергаться интенсивным колебаниям и должен быть удален (по мере возможности) от источ-ников сильных электромагнитных полей.

Устройство средств измерения вибрации

Основными элементам приборов для измерения вибрации являются: датчики вибрации, фильтры, преобразователи сигнала. Датчик вибрации преобразует механические колебания в электрический сигнал. Фильтры выделяют компоненты сигнала в необходимой области частот. Преобразователи сигнала: детектор для оценки амплитуды выделенных компонент; сумматор – для оценки среднеквадратичного значения сигнала; интегратор – для преобразования сигнала виброускорения в виброскорость или виброскорости в виброперемещение.

Виброметры

Приведенная на рисунке 88 блок-схема иллюстрирует конструкцию и принцип действия современного виброметра. Акселерометр соединяется с усилителем заряда, образующим входной каскад прибора. Усилитель заряда во входном каскаде исключает необходимость применения внешнего предусилителя и даёт возможность соединения акселерометра и виброметра длинным кабелем без заметной потери чувствительности системы.

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 88 – Блок-схема виброметра

Каскад электронных интеграторов обеспечивает измерение виброскорости и виброперещения. Фильтры верхних и нижних частот настраивают согласно требованиям к ширине анализируемой полосы частот, рабочему частотному диапазону используемого акселерометра. Фильтры позволяют эффективно подавляют помехи, обусловленные низко- и высокочастотными шумами. Усилительный каскад обеспечивает необходимое усиление сигнала.

Виброметр позволяет измерять среднеквадратичное, пиковое значение или размах колебаний измеряемого сигнала. В конструкции может быть предусмотрено запоминающее устройство. Запоминающее устройство эффективно при измерении механических ударов и переходных процессов. После преобразования в каскаде линейно-логарифмического преобразователя измеряемый сигнал поступает на измерительный прибор.

Вместе с виброметром можно использовать внешние фильтры, обеспечи-вающие частотный анализ исследуемых механических колебаний. Виброметр снабжается выходами переменного и постоянного напряжений. Это позволяет подключать осциллографы, измерительные магнитофоны и регистрирующие приборы.
Динамический диапазон определяет возможность виброизмерительной аппаратуры при измерении амплитуды вибрационного сигнала сохранять линейную связь между входом и выходом. Выражается в дБ или параметрах вибрации.

Динамический диапазон сверху ограничен максимальным значением входного заряда, снизу уровнем собственных шумов усилителя заряда. Динамический диапазон зависит от коэффициента преобразования акселерометра.

Величина отношения сигнал/шум (Кш) регламентируется ГОСТ 30296-95:

Динамический диапазон вибродиагностической аппаратуры лежит в пределах 60…100 дБ, иногда выше.

Анализатор вибрации

Наиболее часто используются средства измерения, реализуемые на базе вычислительной техники: анализаторы формы, спектральные анализаторы и анализаторы спектра огибающей, структура которых приведена на рисунках 89, 90, 91. Функции анализатора формы (рисунок 89) заключаются в измерении амплитуд и фаз отдельных составляющих сигнала и в сравнительном анализе формы отдельных участков сигнала, начало и конец которых определяется углом поворота вала. Подобные анализаторы широко используются для диагностики машин возвратно-поступательного типа и роторов в процессе балансировки. Анализатор спектра (рисунок 90) благодаря использованию однотипных элементов позволяет уменьшить время обработки вибрационного сигнала. Введение в схему детектора огибающей дает возможность обнаруживать повреждения подшипников качения и элементов механической системы на ранних стадиях зарождения (рисунок 91).

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 89 – Структура анализатора формы сигналов вибрации и шума

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 90 – Структура анализатор спектра сигналов вибрации и шума

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 91 – Структура анализатора спектра с детектором огибающей

Выпускаются анализаторы, реализующие возможности персональных компьютеров, структура которых приведена на рисунке 92. Подобные средства измерения и анализа сигналов отличаются большими габаритами и используются в лабораторных или стендовых условиях.

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 92 – Структура входного устройства (AЦП – аналого-цифровой преобразователь)

Развитие конструкции анализаторов вибрации неразрывно связано с развитием компьютерных технологий. Уменьшение габаритов, увеличение объёмов памяти и выполняемых функций – основные направления развития спектроанализаторов.

Встроенные системы

Принципиальная схема встроенной системы вибрационного контроля включает: датчики, соединительные устройства, персональный компьютер, совместно с программным обеспечением выполняющий функции управления переключением датчиков, сбора и анализа информации (рисунок 93).

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра

Рисунок 93 – Принципиальная схема встроенной системы вибрационного контроля

Конфигурация измерительных блоков включает: датчики, измерительные или измерительно-сигнализирующие блоки и средства коммутации. Дополнительно измерительные блоки могут иметь контрольные выходы для подключения переносных приборов. Измерительные блоки являются независимыми друг от друга устройствами. Каждый блок индивидуально программируется. Измерительно-сигнализирующие блоки осуществляют сравнение измеренных значений с запрограммированными.

Программное обеспечение, используемое системой, сохраняет, визуализирует и оценивает результаты измерений. Осуществляет связь с переносными приборами-сборщиками информации. Управляет стационарной системой мониторинга, позволяет организовать базы данных по оборудованию, по времени измерений, работ по смазке, работ по ремонту и техническому обслуживанию. Обеспечивает графическое представление информации о состоянии оборудования.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометраЧто такое чувствительность акселерометра. Смотреть фото Что такое чувствительность акселерометра. Смотреть картинку Что такое чувствительность акселерометра. Картинка про Что такое чувствительность акселерометра. Фото Что такое чувствительность акселерометра