что делают чувствительные нейроны

Что делают чувствительные нейроны

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.

Что такое нейрон (нейронные связи)

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Сколько нейронов в мозге

Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.

Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.

Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Виды нейронов и нейронных связей

Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.

Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.

Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?

Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.

Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.

Функции нейронов

Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.

Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.

Функция распространения информации

Данная функция:

Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.

По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.

Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.

До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.

Функция аккумуляции знаний (сохранения опыта)

Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.

Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.

Функция интеграции

Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.

Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.

Функция производства белков

Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.

Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:

Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.

Восстанавливаются ли нервные клетки

При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.

Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.

Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.

Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.

Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.

Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.

В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.

Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:

Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.

Источник

А что же окружает нейроны?

Конфокальное изображение перинейрональной сети — внеклеточной сетчатой структуры, окружающей тело и проксимальные участки дендритов нейронов в ЦНС. Окрашивание WFA.

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Мозг — довольно сложная штука: вроде бы, о нем много чего известно, но куда больше остается неизведанным. И если о клетках мозга (нейронах) накоплено знаний уже достаточно, то о том, что находится между клетками и непосредственно окружает их — куда меньше. В частности, тело и начальные участки дендритов снаружи клетки опоясывает сетчатая структура, называемая перинейрональной сетью (ПНС), которая практически не изучена! Известно лишь, что основная функция этой сети связана с ограничением синаптической пластичности. Научная группа, в которой я состою, сейчас занимается изучением микроструктуры ПНС. И в этой статье я постараюсь рассказать, что это за сети, чем они интересны, а также показать вклад нашей группы в их изучение.

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Конкурс «био/мол/текст»-2017

Эта работа опубликована в номинации «Своя работа» конкурса «био/мол/текст»-2017.

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро».

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Предыстория, или немного о себе

Я учусь в Казанском федеральном университете в Институте фундаментальной медицины и биологии на 5 курсе. А занимаюсь наукой с 1 курса. Попала в научную группу совершенно случайно, считаю это счастливым стечением обстоятельств. Я год отучилась на биологическом направлении, потому что после подачи заявления в университеты не могла понять, чего действительно хочу. Поэтому оставила все документы там, где прошла в первую волну, и это оказался КФУ. Отучилась на биофаке — тогда еще не было медицинских специальностей, открылись они только через год. За этот единственный свой биологический год я сдружилась с одногруппником — Никитой Арнстом. Мне хотелось переплюнуть его в чем-то на тот момент, потому что он очень умный, и шел на биофак осознанно, в отличие от меня. Ему нравилась наука — он много читал, и ему было легко учиться. Я вся такая пубертатная девочка, очень бесилась, когда у него что-то получалось лучше, чем у меня. Но в целом, отношения у нас с ним неплохие, дружеские. И вот, когда я на следующий год отчислилась, и поступила опять-таки в КФУ, только уже на медицинскую биохимию — получать специальность врача, — некоторые предметы зачли, так что свободного времени было побольше. В итоге Никита предложил мне заниматься наукой, а я подумала: «Почему бы и нет, не понравиться — уйду».

Мой научный руководитель — Михаил Николаевич Павельев — тогда работал в Центре нейронаук в Хельсинки и, в основном, общался со мной по скайпу. Провел собеседование, посмотрел мои оценки (я закончила школу с серебряной медалью, в университете экзамены сдавала и сдаю на «отлично»), задавал много вопросов, но на некоторые из них я ответа не знала, и отвечала неуверенно. Сейчас вспоминать это все забавно. Но спустя эти все годы обучения, я поняла, как выросла.

Наша научная группа тогда занималась травмой спинного мозга — в частности, моей темой было наблюдение за поведением животных при восстановлении после операции: контузионная травма спинного мозга. Затем мы переключились на перинейрональные сети. Моя роль в проекте была — съемка на конфокальном микроскопе и анализ изображений. Ну а потом Никите захотелось сменить тему, и мне пришлось взять всю работу на себя, долго учиться окрашиванию тканей головного мозга. Очень тяжело было. Еще Михаил Николаевич поставил задачу найти новых членов группы и обучить их. Теперь в нашей группе Арсений Расческов — студент уже 3 курса лечебного дела, и Анастасия Кочнева — студентка 2 курса биологического направления. Все вместе мы трудимся на благо нашего научного коллектива и университета.

С чего же все началось, или откуда взялись ПНС?

Все началось с итальянского ученого Камилло Гольджи [1]. Он впервые описал перинейрональные сети (ПНС) на поверхности нейронов коры головного мозга кролика. Он предположил, что это «своего рода корсет из нейрокератина, который препятствует прохождению тока от клетки к клетке». Как обычно бывает в науке, никто его находку особо не воспринял. Сантьяго Рамон-и-Кахаль вообще утверждал, что это всего лишь артефакт, полученный от коагуляции внеклеточной жидкости [2], [3]. В то время это был очень влиятельный ученый, и его мнение, прямо скажем, подавило интерес к этой структуре, и постепенно про нее забыли. Но биология развивалась, совершенствовались методики визуализации и окрашивания. Спустя годы интерес вновь вернулся. За несколько десятилетий накоплено внушительное количество данных о молекулах — компонентах ПНС, и их функциях. Но микроструктура остается неизученной [4].

Почему это важно — изучать микроструктуру ПНС?

Макроскопическая картина дает мало информации, и даже под большим увеличением можно лишь понять, стало ПНС больше или меньше, но более тонкие структурные эффекты, увы, увидеть не получается. Наша научная группа занимается анализом изображений, полученных после иммунофлуоресценции и конфокальной микроскопии [5], [6]. И такие изображения, особенно если сделаны на большом увеличении, дают очень много информации, главное — это извлечь ее и сделать выводы.

Итак, мы смотрим пространственную структуру ПНС. Уже известно, что она регулирует ряд функций синапса, и ее структура меняется при:

Итак, изучение структуры ПНС поможет понять механизмы этих патологий. Так что область эта очень перспективна и актуальна.

Что такое ПНС и «с чем их едят»

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Рисунок 1. Схематическое изображение ПНС, окружающей тело нейрона, а также начальные сегменты дендритов и аксона.

ПНС — это сетчатая структура, окружающая определенные нейроны в головном и спинном мозгах, плотно переплетенная с синаптическими контактами на теле и проксимальных дендритах нейронов [3] (рис. 1).

Перинейрональные сети находят в зрительной коре, соматосенсорной коре, в глубоких ядрах мозжечка, черной субстанции, гиппокампе, а также в спинном мозге [13], [14]. Почему именно там? Потому что ПНС, в основном, окружают тормозные ГАМК-ергические (ГАМКγ-аминомасляная кислота, тормозной медиатор [15]) интернейроны, а они как раз содержатся в этих зонах. Но исследования по поводу того, какие именно нейроны, помимо ГАМК-ергических, окружены перинейрональными сетями, и в каких пропорциях они окружают нейроны во всех зонах мозга, еще ведутся.

Формируются эти сети во время раннего постнатального развития (период после рождения) ближе к концу критического периода (период, когда нервная система особенно чувствительна к определенным стимулам окружающей среды). Самый интересный факт про ПНС — это то, что они ограничивают синаптическую пластичность.

Синаптическая пластичность — способность нейронных связей перестраиваться в ответ на стимулы окружающей среды и сенсорный опыт (информация, воспринятая через органы чувств). Пластичность играет важную роль в уточнении связей во время развития. Во взрослом состоянии пластичность снижается, но способность не пропадает полностью, нейронные связи продолжают реагировать на опыт, возраст или травмы.

Есть такой фермент — хондроитиназа ABC, — который разрушает ПНС. Так вот, обнаружено, что такое ферментативное разрушение приводит к облегчению синаптической пластичности у взрослых животных [13]. К примеру, проводили исследования на линии мышей с болезнью Альцгеймера [16], у которых была стойкая потеря памяти об объекте в течение трех месяцев. Но после введения им этого фермента, память восстановилась до нормального уровня. А вот если генетически ослабить у таких мышей перинейрональные сети, то начало потери памяти задерживается на несколько недель [11].

Из чего же сделаны ПНС, или много страшных непонятных слов

Вообще, ПНС — это всего лишь сочетание белков и протеогликанов, которые секретируются и нейронами, и глией (вспомогательными клетками нервной ткани) на протяжении раннего постнатального развития. И состоят они из четырех компонентов (рис. 2) [17]:

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Рисунок 2. Модель строения ПНС. Hyaluronan — гиалуроновая кислота (ГК) — каркас. Фермент гиалуронсинтаза (hyaluronan synthase) синтезирует ГК и, вероятно, заякоривает ее в клеточной мембране. С ГК взаимодействуют связывающие белки (link protein), а с ними связываются хондроитинсульфат протеогликаны (ХСПГ) (обозначены красным и оранжевым цветами). С ХСПГ связывается тенасцин-R (tenascin-R), что завершает формирование структуры.

Что же делала наша группа

На самом деле все довольно просто: нужно подготовить материал (в нашем случае головной мозг мыши), сделать срезы, покрасить их, отснять всё, что получилось, на конфокальном микроскопе и проанализировать снимки с помощью компьютера. Все просто, сделай — и сиди отдыхай. 🙂

Но если отбросить шутки в сторону, процедура довольно длительная, сложная, требует концентрации внимания и сноровки. В случае провала на любом этапе нужно искать причину ошибки: что же могло пойти не так? Когда я только начала осваивать гистологическую часть работы, мне это жутко не нравилось. Я очень люблю животных, а тут нужно их забить, извлечь мозг и на все это смотреть беспристрастно. Смотреть было жутко даже со стороны, а уж когда делаешь всё это самостоятельно. Руки дрожат, и ты думаешь только о том, как это ужасно и как бы сделать так, чтобы животное ничего не почувствовало. Приходилось преодолевать страх, чтобы можно было продолжать работу. Сейчас я отношусь к этому более спокойно — рука набилась, все движения отточены. Процедуру забоя нужно проводить как можно быстрее, чтобы животное не успело очнуться и почувствовать невыносимую боль. А ведь оно может умереть раньше, чем нужно, от болевого шока, к тому же выпустив кучу медиаторов стресса типа адреналина, что может повлиять на конечный результат и дать нежелательные микроизменения в мозге. Вот почему всё нужно делать предельно быстро.

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Рисунок 3. Вот так выглядит процедура нарезки

Затем нужно извлечь головной мозг из черепной коробки, не повредив его. Конечно, если фиксация прошла хорошо, то делать это намного проще, но все равно тут надо быть крайне внимательным. После подготовительных этапов — фиксации, криопротекции (это нужно для того, чтобы мозг «пережил» дальнейшее замораживание), заключения в среду и замораживания — можно приступать к нарезке материала.

Порезка на криотоме — еще один ужасно трудоемкий этап, где необходимы внимательность и сноровка в кубе, иначе всё насмарку. Нужно сделать очень тонкие срезы (18 мкм) очень острым лезвием (рис. 3). Казалось бы, что сложного? Но в процессе срезы скручиваются и рвутся, что, безусловно, портит препарат. Поэтому тут больше имеет значение опыт.

Очень нужный нам инструмент — беличья кисть, чтобы удерживать срез за край и сделать его ровным. А еще в состав криотома входит так называемая anti-roll plate — по сути, всего лишь прямоугольное стекло, предотвращающее скручивание срезов (рис. 4).

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Рисунок 4. Anti-roll plate

И нет ничего лучше, когда процесс нарезки проходит быстро, и срезы получаются ровными, не порванными и просто шикарными. И ты такой радостный на подъеме идешь красить.

Но окрашивание (в нашем случае иммунофлюоресценция [6]) — это еще один этап, и один из самых важных, на котором можно всё испортить. Плохо покрасишь — ничего не увидишь, а значит, все твои старания получить суперкрутые ровные срезы пошли прахом. Этап этот длительный, и здесь тоже очень важны опыт, точное следование протоколу, проверка всех буферов на pH. В общем, очень много тонкостей, чтобы получить качественное окрашивание без высокого фона. Это значит, что те структуры, которые вы покрасили, будут хорошо и четко видны.

Здесь я лишь оговорюсь, что для окрашивания перинейрональных сетей используют биотинилированный лектин (лектин — это углеводсвязывающий белок [19], а слово «биотинилированный» говорит о том, что к этому лектину присоединен биотин) Wisteria floribunda (WFA) (глицинии обильноцветущей), который связывается с углеводным компонентом ПНС. А затем для визуализации применяют флуоресцентный краситель: стрептавидин-меченный AlexaFluor 633.

И вот после этого можно наконец смотреть в микроскоп, делать снимки и их анализировать. Как вы поняли, проще сказать, чем сделать. Поэтому квалифицированный гистолог в научном коллективе на вес золота. Ведь в такого рода исследованиях без гистологии никуда. За дополнительными подробностями о микроскопических методиках можно обратиться к статье «12 методов в картинках: микроскопия» [6].

Итог: мы анализировали изображения гистологических срезов соматосенсорной коры взрослых мышей, окрашенных WFA. Получив эти изображения, с помощью специальной программы мы обводили ячейки как многоугольники. Далее у них определяли площадь, периметр и количество вершин. Этот анализ мы провели на телах 34 нейронов из коры мозга мыши (1274 ячейки, 3 мыши) (рис. 5).

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Рисунок 5. Структура ПНС кортикальных нейронов взрослых мышей. а — WFA-позитивные ПНС, конфокальный снимок. б — Ячеистая структура ПНС на поверхности тел нейронов. в — Выбор координат вершин ячеек с помощью программы FIJI в области, отмеченной на б. Вершины каждой ячейки метились вручную. г — Результат мечения ячеек на в. Контуры каждой ячейки прорисованы программой, основываясь на координатах вершин.

Всё это мы делаем для того, чтобы копнуть глубже в структуру перинейрональных сетей. Некоторые ячейки окрасились ярче, что означает, что там отложилось больше углеводного компонента — ходроитинсульфат протеогликанов, про которые говорилось выше. Значит синапсы, которые находятся в тех ячейках, окружены более плотно, и им сложнее перестраиваться. Возможно, это является одним из механизмов долговременной памяти.

Обычно все останавливаются на количественном анализе ПНС, а качественно смотрят по компонентам на молекулярном уровне. Но такой анализ изображений поможет другим группам исследователей, занимающихся ПНС, более детально понять данные структуры, посмотреть на то, что происходит при влияниях различных веществ на мозг, при заболеваниях.

Ячейки, ячейки и еще раз ячейки

В основном, все ячейки имеют 4-, 5- (самая часто встречающаяся, 44%) или 6-угольную форму. В сумме они составляют 93% проанализированных нами ячеек. Площадь ячеек также варьирует в интервале 0,24–5,48 мкм 2 (в среднем 1,29 ± 0,67 мкм 2 ). Это предполагает возможный механизм для регуляции функции синапсов через морфологические ограничения размера ячейки (рис. 6).

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Еще мы обнаружили два варианта распределения интенсивности красителя по периметру ячеек. Первый мы назвали полярным: интенсивность сигнала выше в вершинах, чем в серединах ребер. Второй — неполярный — паттерн характеризуется относительно равномерным распределением интенсивности WFA по периметру ячейки. Все это наглядно показано на рисунке 7.

что делают чувствительные нейроны. Смотреть фото что делают чувствительные нейроны. Смотреть картинку что делают чувствительные нейроны. Картинка про что делают чувствительные нейроны. Фото что делают чувствительные нейроны

Рисунок 7. Паттерны распределения WFA вдоль периметра ячейки. а — Полярные ячейки. б — Показан контур ячейки и углы. в — Распределение интенсивности вдоль периметра ячейки, отмеченной на б. г — Неполярная ячейка. д — Контур неполярной ячейки и углы. е — Распределение интенсивности вдоль границы ячейки, отмеченной на д.

Чем важен этот уникальный результат — еще предстоит понять. Возможно, полярные и неполярные ячейки по-разному «окутывают» нейроны, что по-разному действует на синаптическую пластичность и процессы памяти и обучения.

Планы на будущее

Накопилось много данных о том, что же происходит в перинейрональных сетях при различных патологиях: посттравматический синдром, эпилепсия, шизофрения, а также при физиологических состояниях (например, при старении). И здесь очень важно понять, что же происходит на микроструктурном уровне, чтобы применить эти наблюдения при разгадке патогенеза заболеваний и разработке новых видов лечения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *